Автомобильный портал - ZadonskVokzal

Генератор синусоидальных колебаний своими руками. Генераторы

Генераторы сигнала - это устройства, которые в первую очередь предназначены для тестирования передатчиков. Дополнительно специалисты используют их для измерения характеристик аналоговых преобразователей. Тестирование модельных передатчиков происходит путем имитации сигнала. Это необходимо, чтобы проверить прибор на соответствие современным стандартам. Непосредственно сигнал на устройство может подаваться в чистом виде либо с искажением. Скорость его по каналам может сильно различаться.

Как выглядит генератор?

Если рассматривать обычную модель генератора сигналов, то на передней панели можно заметить экран. Необходим он для того, чтобы следить за колебаниями и проводить управление. В верхней части экрана располагается редактор, который предлагает на выбор различные функции. Далее ниже идет севенсор, который показывает частоту колебаний. Под ним располагается режимная строка. Уровень амплитуды или смещения сигнала можно регулировать с помощью двух кнопок. Для работы с файлами имеется отдельная мини-панель. С ее помощью результаты тестирования можно сохранить либо сразу открыть.

Чтобы пользователь был способен менять частоту дискретизации, в генераторе имеется специальный регулятор. По числовым значениям можно довольно быстро произвести синхронизацию. Выходы сигналов, как правило, располагаются в нижней части устройства под экраном. Там же имеется копка для запуска генератора.

Самодельные устройства

Сделать генератор сигналов своими руками довольно проблематично из-за сложности устройства. Основным элементом оборудования принято считать селектор. Рассчитан он в модели на определенное число каналов. Микросхем в устройстве, как правило, имеется две. Для регулировки частоты генератору необходим синтезатор. Если рассматривать многоканальные приборы, то микроконтроллеры для них подойдут серии КН148. Преобразователи используются только аналогового типа.

Устройства синусоидального сигнала

Генератор синусоидального сигнала микросхемы использует довольно простые. Усилители при этом могут применяться только операционного типа. Это необходимо для нормальной передачи сигнала от резисторов на плату. Потенциометры включаются в систему с номиналом не менее 200 Ом. Показатель коэффициента заполнения импульсов зависит от скорости процесса генерации.

Для гибкой настройки устройства блоки устанавливаются многоканальные. генератор синусоидального сигнала изменяет при помощи поворотного регулятора. Для тестирования приемников он подходит только модулирующего типа. Это говорит о том, что каналов у генератора должно быть как минимум пять.

Схема низкочастотного генератора

Низкочастотный генератор сигналов (схема показана ниже) включает в себя аналоговые резисторы. Потенциометры должны быть установлены только номиналом 150 Ом. Для изменения величины импульса используют модуляторы серии КК202. Генерация в данном случае происходит через конденсаторы. Между резисторами в схеме должна находиться перемычка. Наличие двух выводов позволяет установить в генератор сигналов (низкочастотный) переключатель.

Принцип действия модели звукового сигнала

Подключая генератор частоты, первоначально напряжение подают на селектор. Далее переменный ток проходит через связку транзисторов. После преобразования в работу включаются конденсаторы. Отражаются колебания на экране при помощи микроконтроллера. Чтобы регулировать предельную частоту, необходимы специальные выводы на микросхеме.

Максимальную выходную мощность в этом случае генератор звукового сигнала может достичь в 3 ГГц, но погрешность должна быть минимальной. Для этого возле резистора устанавливается ограничитель. Фазовый шум системой воспринимается за счет коннектора. Показатель фазовой модуляции зависит исключительно от скорости преобразования тока.

Схема устройства смешанных сигналов

Стандартная схема генератора такого типа отличается многоканальным селектором. При этом выходов на панели имеется более пяти. В данном случае предельную частоту максимум можно выставлять в 70 Гц. Конденсаторы во многих моделях имеются с емкостью не более 20 пФ. Резисторы чаще всего включаются номиналом в 4 Ом. Время установки первого режима составляет в среднем 2.5 с.

За счет наличия ограничителя пропускания обратная мощность агрегата может достигать 2 МГц. Частоту спектра в данном случае можно регулировать при помощи модулятора. Для выходного импеданса имеются отдельные выходы. уровня в схеме равняется меньше 2 Дб. Преобразователи в стандартных системах имеются серии РР201.

Прибор сигналов произвольной формы

Данные приборы рассчитаны на малую погрешность. Режим гибкой последовательности в них предусмотрен. Стандартная схема селектора предполагает шесть каналов. Минимальный параметр частоты равняется 70 Гц. Положительные импульсы генератором данного типа воспринимаются. Конденсаторы в цепи емкость имеют не менее 20 пФ. Выходное сопротивление устройством выдерживается до 5 Ом.

По параметрам синхронизации данные генераторы сигнала довольно сильно отличаются. Связано это, как правило, с типом коннектора. В результате время нарастания колеблется от 15 до 40 нс. Всего режимов в моделях имеется два (линейный, а также логарифмический). С их помощью амплитуду можно менять. Погрешность частоты в данном случае составляет менее 3%.

Модификации сложных сигналов

Для модификации сложных сигналов специалисты используют в генераторах только многоканальные селекторы. Усилителями они оборудуются в обязательном порядке. Для смены режимов работы используют регуляторы. Благодаря преобразователю ток становится постоянным с 60 Гц. Время нарастания в среднем должно составлять не более 40 нс. С этой целью минимальная емкость конденсатора равняется 15 пФ. Сопротивление системой для сигнала обязано восприниматься в районе 50 Ом. Искажение при 40 кГц составляет обычно 1%. Таким образом, для тестирования приемников генераторы применяться могут.

Генераторы со встроенными редакторами

Генераторы сигнала указанного типа очень просты в настройке. Регуляторы в них рассчитаны на четыре позиции. Таким образом, уровень предельной частоты можно настраивать. Если говорить о времени установки, то оно во многих моделях составляет 3 мс. Достигается это за счет микроконтроллеров. Соединяются они с платой при помощи перемычек. Ограничители пропускания в генераторах данного типа не устанавливаются. Преобразователи по схеме устройства располагаются за селекторами. Синтезаторы в моделях применяются редко. Максимальная выходная мощность устройства находится на уровне 2 МГц. Погрешность в данном случае допускается только 2%.

Устройства с цифровыми выходами

Генераторы сигнала с цифровыми выходами коннекторами оснащаются серии КР300. Резисторы, в свою очередь, включаются номиналом не менее 4 Ом. Таким образом, внутреннее сопротивление резистором выдерживается большое. Тестировать данные устройства способны приемники с мощностью не более 15 В. Соединение с преобразователем осуществляется только через перемычки.

Селекторы в генераторах можно встретить трех- и четырехканальные. Микросхема в стандартной цепи, как правило, применяется типа КА345. Переключатели для измерительных приборов используют только поворачивающиеся. Импульсная модуляция в генераторах происходит довольно быстро, а достигается это за счет высокого коэффициента прохождения. Также следует учитывать малый уровень широкополосного шума на уровне 10 дБ.

Модели с высокой тактовой частотой

Генератор сигналов с высокой тактовой частотой отличается большой мощностью. Внутреннее сопротивление он способен в среднем выдерживать 50 Ом. Полоса пропускания у таких моделей обычно равняется 2 ГГц. Дополнительно следует учитывать, что конденсаторы используются емкостью не менее 7 пФ. Таким образом, максимальный ток выдерживается на отметке в 3 А. Искажение в системе максимум может составлять 1%.

Усилители, как правило, в генераторах можно встретить только операционного типа. Ограничители пропускания в цепи устанавливаются вначале, а также в конце. Коннектор для выбора типа сигналов присутствует. Микроконтроллеры можно встретить чаще всего серии РРК211. Селектор как минимум рассчитан на шесть каналов. Регуляторы поворотные в таких устройствах имеются. Максимум предельную частоту можно выставлять в 90 Гц.

Работа генераторов логических сигналов

Данный генератор сигналов резисторы имеет номиналом не более 4 Ом. При этом внутреннее сопротивление держится довольно высокое. Для уменьшения скорости передачи сигнала устанавливаются типа. Выводов на панели, как правило, имеется три. Соединение с ограничителями пропускания происходит только через перемычки.

Переключатели в приборах установлены поворотные. Можно выбирать два режима. Для фазовой модуляции генераторы сигнала указанного типа использоваться могут. Параметр широкополосного шума у них не превышает 5 дБ. Показатель частотной девации, как правило, находится на отметке в 16 МГц. К недостаткам можно отнести долгое время нарастания, а также спада. Связано это с низкой пропускной способностью микроконтроллера.

Схема генератора с модулятором МХ101

Стандартная схема генератора с таким модулятором предусматривает наличие селектора на пять каналов. Это дает возможность работать в линейном режиме. Максимальная амплитуда при низкой нагрузке выдерживается в 10 пик. Смещение по постоянному напряжению происходит довольно редко. Параметр выходного тока находится на отметке в 4 А. Погрешность частоты максимум способна доходить до 3%. Среднее время нарастания у генераторов с такими модуляторами равно 50 нс.

Форма сигнала меандр системой воспринимается. Тестировать приемники с помощью этой модели можно мощностью не более 5 В. Режим логарифмической развертки позволяет довольно успешно работать с различными измерительными приборами. Скорость перестройки на панели можно менять плавно. За счет высокого выходного сопротивления нагрузка с преобразователей снимается.

Самодельные приборы и оборудование

Радиоконструктор 2007 №11

Обычно, генераторы низкочастотных синусоидальных сигналов строят на операционных усилителях. Но логические элементы тоже могут работать в аналоговом режиме -в качестве усилителей. В литературе эта тема затрагивалась неоднократно, но в основном это были схемы усилителей аналоговых сигналов (усилители НЧ на КМОП-микросхемах, приёмники прямого усиления и т.п.). Но любой усилитель, даже сделанный из логических элементов, можно превратить в генератор, - все дело в обратной связи...

На рисунке 1 приводится схема синусоидального генератора НЧ фиксированной частоты, реализованного на двух логических инверторах микросхемы К561ЛН2. Инверторы переведены в аналоговый режим с помощью ООС на резисторах R1 и R3. каждый из которых включен между входом и выходом инвертора. Полученные таким образом усилители включены последовательно (как два каскада) через резистор R4. Причем, коэффициент передачи первого каскада зависит от соотношения сопротивлений R1 и R2. Так как эти резисторы одинаковы, - коэффициент передачи первого каскада равен единице Коэффициент передачи второго каскада определяется соотношением сопротивлений R4 и R3, и его можно подстраивать резистором R4.

Резисторы R1-R2 вместе с ёмкостями С1 и С2 образуют мост Вина , настроенный на некоторую частоту которая определяется по известной формуле:

F=1/(RC), где R=R1=R2, С=С1=С2.

Чтобы получить неограниченную и неискаженную синусоиду нужно отрегулировать соответствующим образом коэффициент передачи усилителя под строенным резистором R4. В данной схеме, при питании от источника напряжением 9V наилучшая форма синусоиды получается при её действующем значении около 1V.

Этот генератор, хотя и выполнен на логических элементах, является чисто аналоговым, и его выходной продукт не содержит каких-то импульсных составляющих или ступенчатого напряжения, нуждающихся в фильтрации.

На рисунке 2 показана схема цифрового кварцевого синусоидального генератора , вырабатывающего синусоидальное напряжение частотой 976,5625 Гц (при частоте кварцевого резонатора 500 кГц). Здесь синусоидальное напряжение формируется из прямоугольных импульсов с помощью ЦАП на элементах микросхемы D2 и резисторах. Период состоит из 32-х ступенек. Окончательно выходной сигнал формируется операционным усилителем А1, и включённой на его выходе RC-цепочкой. которая сглаживает ступеньки, образующие синусоиду.

Частота выходной синусоиды будет в 512 раз ниже частоты кварцевого резонатора или входных импульсов, которые, при работе от внешнего источника импульсов, можно подавать на вывод 11 D1. При этом, детали R1, R2, Q1, С1, С2 исключаются

Схема привлекательна тем, что позволяет получить синусоидальный низкочастотный сигнал кварцевой стабильности частоты.

РадиоМатор 2002 №6

Еще одна простенькая схема синусоидального генератора с применением цифровой микросхемы. Несмотря на свой необычный внешний вид, схема вполне надёжна, автор пользуется ею уже около 2 лет.

Основным элементом генератора является микросхема К155ЛАЗ. Кольцевое соединение трёх инверторов DD1.1...DD1.3 представляет собой неустойчивую структуру, склонную к возбуждению на максимальной рабочей частоте. Резистор R1 задаёт рабочую точку микросхемы вблизи порога переключения. Благодаря наличию у ТТЛ-схем "мёртвой зоны" (диапазона напряжений между порогами логического "0" и логической "1") ИМС переходит в активный режим. Контур L1-C1 создаёт условия для возбуждения на собственной резонансной частоте. Добротность контура большого значения не имеет, схема уверенно запускается и с низкодобротными контурами.

Стабильность частоты зависит исключительно от стабильности контура и достаточно высока. Амплитуда выходного напряжения зависит от добротности контура и может достигать 2,5 В. При максимальной частоте (около 10...15 МГц) амплитуда импульсов раза в 2 меньше, и микросхема начинает греться.

Выходной сигнал можно снимать как с катушки L1, так и с конденсатора С1. Однако лучше снимать его с катушки, в этом случае ёмкость нагрузки (даже весьма значительная) оказывает минимальное влияние на рабочую частоту. Несмотря на это, нагрузку лучше подключать через буфер. Это может быть эмиттерный или истоковый повторитель, буфер на ОУ или катушка связи - все зависит от выходной частоты. Очевидно, что на частоте 1 кГц следует отдать предпочтение ОУ, а на 5 МГц - катушке связи.

Налаживание схемы сводится к подбору рабочей точки ИМС при помощи резистора R1. Для этого к выходу генератора подключают осциллограф и, вращая R1, добиваются появления устойчивой генерации с максимальной амплитудой. R1 лучше взять многооборотный, типа СПЗ-39.

Устройство работоспособно с любыми инверторами ТТЛ- и ТТЛШ-серий. От применения КМОП-микросхем лучше отказаться, т.к. добиться устойчивой генерации на них практически невозможно.

А.УВАРОВ, г.Белгород.

Предлагаемый испытательный звуковой генератор, формирующий синусоидальный сигнал, основан на мосте Вина, производит очень низкий уровень искажений синусоиды и работает в диапазоне от 15 Гц до 22 кГц в двух под-диапазонах. Два уровня выходных напряжений - от 0-250 мВ и 0-2,5 В. Схема совсем несложная и рекомендована для сборки даже малоопытными радиолюбителями.

Список деталей для аудиогенератора

  • R1, R3, R4 = 330 Ом
  • R2 = 33 Ом
  • R5 = 50к сдвоенный потенциометр (линейный)
  • R6 = 4.7к
  • R7 = 47к
  • R8 = 5к потенциометр (линейный)
  • C1, C3 = 0.022uF
  • C2, C4 = 0.22uF
  • C5, C6 = 47uF электролитические конденсаторы (50v)
  • IC1 = TL082 двойной ОУ с панелькой
  • L1 = 28В/40мА лампа
  • J1 = BNC разъем
  • J2 = RCA Jack
  • B1, B2 = 9 В Крона


Схема, выложенная выше, совсем проста, и имеет в основе двойной операционный усилитель TL082, который используется как генератор и буферный усилитель. Примерно по такому типу строят и промышленные аналоговые генераторы. Сигнал на выходе является достаточным даже для подключения наушников 8 Ом. В режиме ожидания потребляемый ток около 5 мА от каждой батареи. Их тут две по 9 вольт, так как питание ОУ двухполярное. Два выходных разъема разных типов установлены для удобства. Для сверхъярких светодиодов можно использовать 4.7к резисторы R6. Для стандартных светодиодов - 1к резистор.


Осциллограмма показывает фактический вид 1 кГц выходного сигнала от генератора.

Сборка генератора

Светодиод служит в качестве индикатора включения/выключения устройства. Относительно лампы накаливания L1, многие типы лампочке были испытаны в процессе сборки и все работали неплохо. Начните с вырезания печатной платы нужного размера, травления, сверления и сборки.


Корпус тут полу-деревянный - полу-металлический. Отрежьте два куска дерева толщиной по сантиметру для боков корпуса. Отрежьте кусок алюминиевой пластины 2 мм для передней панели. И кусок белого матового картона на циферблат шкалы. Согните два куска алюминия, образуя держатели батареи и прикрепить их винтами к бокам.

Принципиальная схема самодельного широкодиапазонного генератора синусоидального сигнала для лабораторных целей, выполнен на микросхеме МАХ038. Синусоидальный генератор является одним из важнейших приборов лаборатории радиолюбителя. Обычно делаютдва генератора, низкочастотный и высокочастотный.

Низкочастотный делают на операционном усилителе, охваченном цепью обратной связи с мостом Винна, а плавная настройка осуществляется сдвоенным переменным резистором. ВЧ-генератор делают на основе транзисторного LC-генератора с настройкой переменным конденсатором или варикапом.

Микросхема МАХ038

Используя микросхему МАХ038 можно сделать широкополосной генератор синусоидального сигнала, от единиц Гц до десятков МГц. При этом плавная настройка будет одинарным переменным резистором, а катушек не будет вообще. Микросхема МАХ038 предназначена для построения схем генераторов.

Функциональная схема микросхемы показана на рисунке 1. А на рисунке 2 приводится типовая схема, рекомендованная производителем для построения схемы генератора синусоидального сигнала. Там же приводится формула для расчета частоты.

Микросхема по такой схеме может генерировать синусоидальный сигнал в очень широком диапазоне частот, от единиц и даже долей Гц, то 20 МГц. Что позволяет её использовать в самых разных схемах и устройствах, включая и гетеродины приемных устройств.

Рис. 1. Функциональная схема микросхемы МАХ038.

Рис. 2. Типовая схема включения микросхемы МАХ038.

Приницпиальная схема

На основе типовой схемы синусоидального генератора (рис.2) выполнена схема широкодиапазонного лабораторного генератора синусоидального сигнала (рис. 3), генерирующего частоту от 2 Гц до 20 МГц в семи переключаемых поддиапазонах. Что позволяет использовать этот генератор как для настройки НЧ аппаратуры, так и для РЧ аппаратуры.

Как указано в формуле на рис.2, частота генерации зависит от емкости конденсатора, включенного между выводом 5 и общим нулем питания, и сопротивления резистора между выводами 10 и 1. Для возможности и удобства работы в таком широком диапазоне частот, диапазон разбит на семь поддиапазонов, которые переключаются переключателем S1 путем переключения конденсаторов между выводом 5 и общим нулем.

Рис. 3. Принципиальная схема широкодиапазонного синусоидального генератора сигналов.

Плавная настройка внутри каждого диапазона осуществляется двумя последовательно включенными переменными резисторами R4 и R5, при этом резистор R5 служит для грубой установки частоты, a R4, более низкого сопротивления, для точной установки частоты. Шкалы у генератора нет, ею служит цифровой частотомер, подключаемый в разъем Х2.

Если предполагается снабдить генератор шкалой настройки, то схему плавной настройки нужно сделать на основе одного переменного резистора, многооборотного и с линейным законом изменения сопротивления.

Выходной синусоидальный сигнал снимается с вывода 19 и поступает на разъем Х2 для подачи на вход контрольного частотомера. А также, через регулятор выходного переменного напряжения на резисторе R7 на выход - разъем ХЗ, и на аттенюатор на резисторах R7-R10, позволяющем понизить выходное напряжение в 10, 100 и 1000 раз. Питание должно быть от двухполярного стабилизированного источника ±5V.

Детали и монтаж

Монтаж выполнен без применения печатной платы, в жестяном коробе размером 150x100x50 мм. Короб служит одновременно и шиной общего провода питания. Микросхема в корпусе DIP-20.

Монтаж выполнен следующим образом. Все выводы микросхемы А1, кроме тех, что соединяются с общим нулем питания, отогнуты в горизонтальное положение. Выводы, соединенные с общим проводом оставлены как есть, и припаяны к дну вышеуказанного жестяного короба.

После того как микросхема жестко закрепилась выводами, припаянными к общему проводу, остальной монтаж выполнен объемным способом на остальных выводах микросхемы. А так же, на выводах разъемов, резисторов R4, R5, R6 и галетного переключателя S1.

Значения емкостей С6-С12 указаны на схеме как есть, они не подбирались точно, поэтому реальные поддиапазоны отличаются от указанных на схеме. Если нужно выставить точные поддиапазоны, нужно точно подобрать емкости С6-С12, подключая к ним дополнительные «достроечные» конденсаторы.

Но это имеет значение только если генератор будет работать с собственной механической шкалой. При работе в паре с частотомером точная подборка С6-С12 не всегда требуется, так как генерируемая частота видна на табло цифрового частотомера.

Кручинин П. С. РК-2016-09.

В радиолюбительской практике часто возникает необходимости использовать генератор синусоидальных колебаний. Применения ему можно найти самые разнообразные. Рассмотрим как создать генератор синусоидального сигнала на мосту Вина со стабильной амплитудой и частотой.

В статье описывается разработка схемы генератора синусоидального сигнала. Сгенерировать нужную частоту можно и программно:

Наиболее удобным, с точки зрения сборки и наладки, вариантом генератора синусоидального сигнала является генератор, построенный на мосту Вина, на современном Операционном Усилителе (ОУ).

Мост Вина

Сам по себе мост Вина является полосовым фильтром, состоящим из двух . Он выделяет центральную частоту и подавляет остальные частоты.

Мост придумал, Макс Вин еще в 1891 году. На принципиальной схеме, сам мост Вина обычно изображается следующим образом:

Картинка позаимствована у Википедии

Мост Вина обладает отношением выходного напряжения ко входному b=1/3 . Это важный момент, потому что этот коэффициент определяет условия стабильной генерации. Но об этом чуть позже

Как рассчитать частоту

На мосту Вина часто строят автогенераторы и измерители индуктивности. Чтобы не усложнять себе жизнь обычно используют R1=R2=R и C1=C2=C . Благодаря этому можно упростить формулу. Основная частота моста рассчитывается из соотношения:

f=1/2πRC

Практически любой фильтр можно рассматривать как делитель напряжения, зависящий от частоты. Поэтому при выборе номиналов резистора и конденсатора желательно, чтобы на резонансной частоте комплексное сопротивление конденсатора (Z), было равно, или хотя бы одного порядка с сопротивлением резистора.

Zc=1/ωC=1/2πνC

где ω (омега) — циклическая частота, ν (ню) — линейная частота, ω=2πν

Мост Вина и операционный усилитель

Сам по себе мост Вина не является генератором сигнала. Для возникновения генерации его следует разместить в цепи положительной обратной связи операционного усилителя. Такой автогенератор можно построить и на транзисторе. Но использование ОУ явно упростит жизнь и даст лучшие характеристики.


Коэффициент усиления на троечку

Мост Вина имеет коэффициент пропускания b=1/3 . Поэтому условием генерации является то, что ОУ должен обеспечивать коэффициент усиления равный трем. В таком случает произведение коэффициентов пропускания моста Вина и усиления ОУ даст 1. И будет происходить стабильная генерация заданной частоты.

Если бы мир был идеальным, то задав резисторами в цепи отрицательной обратной связи, нужный коэфф усиления, мы бы получили готовый генератор.


Это неинвертирующий усилитель и его коэффициент усиления определяется соотношением: K=1+R2/R1

Но увы, мир не идеален. … На практике оказывается, что для запуска генерации необходимо, чтобы в самый начальный момент коэфф. усиления был немного больше 3-х, а далее для стабильной генерации он поддерживался равным 3.

Если коэффициент усиления будет меньше 3, то генератор заглохнет, если больше — то сигнал, достигнув напряжения питания, начнет искажаться, и наступит насыщение.

При насыщении, на выходе будет поддерживаться напряжение, близкое к одному из напряжений питания. И будут происходить случайные хаотичные переключения между напряжениями питания.


Поэтому, строя генератор на мосте Вина, прибегают к использованию нелинейного элемента в цепи отрицательной обратной связи, регулирующего коэффициент усиления. В таком случае генератор будет сам себя уравновешивать и поддерживать генерацию на одинаковом уровне.

Стабилизация амплитуды на лампе накаливания

В самом классическом варианте генератора на мосте Вина на ОУ, применяется миниатюрная низковольтная лампа накаливания, которая устанавливается вместо резистора.


При включении такого генератора, в первый момент, спираль лампы холодная и ее сопротивление мало. Это способствует запуску генератора (K>3). Затем, по мере нагрева, сопротивление спирали увеличивается, а коэффициент усиления снижается, пока не дойдет до равновесия (K=3).

Цепь положительной обратной связи, в которую был помещен мост Вина, остается без изменений. Общая принципиальная схема генератора выглядит следующим образом:


Элементы положительной обратной связи ОУ определяют частоту генерации. А элементы отрицательной обратной связи — усиление.

Идея использования лампочки, в качестве управляющего элемента очень интересна и используется по сей день. Но у лампочки, увы, есть ряд недостатков:

  • требуется подбор лампочки и токоограничивающего резистора R*.
  • при регулярном использовании генератора, срок жизни лампочки обычно ограничивается несколькими месяцами
  • управляющие свойства лампочки зависят от температуры в комнате.

Другим интересным вариантом является применение терморезистора с прямым подогревом. По сути, идея та же, только вместо спирали лампочки используется терморезистор. Проблема в том, что его нужно для начала найти и опять таки подобрать его и токоограничиващие резисторы.

Стабилизация амплитуды на светодиодах

Эффективным методом стабилизации амплитуды выходного напряжения генератора синусоидальных сигналов является применение в цепи отрицательной обратной связи ОУ светодиодов (VD1 и VD2 ).

Основной коэффициент усиления задается резисторами R3 и R4 . Остальные же элементы (R5 , R6 и светодиоды) регулируют коэффициент усиления в небольшом диапазоне, поддерживая генерацию стабильной. Резистором R5 можно регулировать величину выходного напряжения в интервале примерное 5-10 вольт.

В дополнительной цепи ОС желательно использовать низкоомные резисторы (R5 и R6 ). Это позволит пропускать значительный ток (до 5мА) через светодиоды и они будут находиться в оптимальном режиме. Даже будут немного светиться:-)

На показанной выше схеме, элементы моста Вина рассчитаны для генерации на частоте 400 Гц, однако они могут быть легко пересчитаны для любой другой частоты по формулам, представленным в начале статьи.

Качество генерации и применяемых элементов

Важно, чтобы операционный усилитель мог обеспечить необходимый для генерации ток и обладал достаточной полосой пропускания по частоте. Использование в качестве ОУ народных TL062 и TL072 дало очень печальные результаты на частоте генерации 100кГц. Форму сигнала было трудно назвать синусоидальной, скорее это был треугольный сигнал. Использование TDA 2320 дало еще более худший результат.

А вот NE5532 показа себя с отличной стороны, выдав на выходе сигнал очень похожий на синусоидальный. LM833 так же справилась с задачей на отлично. Так что именно NE5532 и LM833 рекомендуются к использованию как доступные и распространенные качественные ОУ. Хотя с понижением частоты гораздо лучше себя будут чувствовать и остальные ОУ.

Точность частоты генерации напрямую зависит от точности элементов частотозависимой цепи. И в данном случае важно не только соответствие номинала элемента надписи на нем. Более точные детали имеют лучшую стабильность величин при изменении температуры.

В авторском варианте были применены резистор типа С2-13 ±0.5% и слюдяные конденсаторы точностью ±2%. Применение резисторов указанного типа обусловлено малой зависимостью их сопротивления от температуры. Слюдяные конденсаторы так же мало зависят от температуры и имеют низкий ТКЕ.

Минусы светодиодов

На светодиодах стоит остановиться отдельно. Их использование в схеме синус генератора вызвано величиной падения напряжения, которое обычно лежит в интервале 1.2-1.5 вольта. Это позволяет получать достаточно высокое значение выходного напряжения.


После реализации схемы, на макетной плате, выяснилось, что из-за разброса параметров светодиодов, фронты синусоиды на выходе генератора не симметричны. Это немного заметно даже на приведенной выше фотографии. Помимо этого присутствовали небольшие искажения формы генерируемого синуса, вызванные недостаточной скоростью работы светодиодов для частоты генерации 100 кГц.

Диоды 4148 вместо светодиодов

Светодиоды были заменены на всеми любимые диоды 4148. Это доступные быстродействующие сигнальные диоды со скоростью переключения менее 4 нс. Схема при этом осталась полноценно работоспособной, от описанных выше проблем не осталось и следа, а синусоида приобрела идеальный вид.

На следующей схеме элементы моста вина рассчитаны на частоту генерации 100 кГц. Так же переменный резистор R5 был заменен на постоянные, но об этом позже.


В отличие от светодиодов, падение напряжения на p-n переходе обычных диодов составляет 0.6÷0.7 В, поэтому величина выходного напряжения генератора составила около 2.5 В. Для увеличения выходного напряжения возможно включение нескольких диодов последовательно, вместо одного, например вот так:


Однако увеличение количества нелинейных элементов сделает генератор более зависимым от внешней температуры. По этой причине было решено отказаться от такого подхода и использовать по одному диоду.

Замена переменного резистора постоянными

Теперь о подстроечном резисторе. Изначально в качестве резистора R5 был применен многооборотный подстроечный резистор на 470 Ом. Он позволял точно регулировать величину выходного напряжения.

При построении любого генератора крайне желательно наличие осциллографа. Переменный резистор R5 напрямую влияет на генерацию — как на амлитуду так и на стабильность.

Для представленной схемы генерация стабильна лишь в небольшом интервале сопротивлений этого резистора. Если соотношение сопротивлений больше требуемого — начинается клиппинг, т.е. синусоида будет подрезаться сверху и снизу. Если меньше — форма синусоиды начинает искажаться, а при дальнейшем уменьшении генерация глохнет.

Так же это зависит от используемого напряжения питания. Описываемая схема исходно была собрана на ОУ LM833 с питанием ±9В. Затем, без изменения схемы, ОУ были заменены на AD8616, а напряжение питания на ±2,5В (максимум для этих ОУ). В итоге такой замены синусоида на выходе подрезалась. Подбор резисторов дал значения 210 и 165 ом, вместо 150 и 330 соответственно.

Как подобрать резисторы «на глаз»

В принципе можно оставить и подстроечный резистор. Все зависит от требуемой точности и генерируемой частоты синусоидального сигнала.

Для самостоятельного подбора следует, в первую очередь, установить подстроечный резистор номиналом 200-500 Ом. Подав выходной сигнал генератора на осциллограф и вращая подстроечный резистор дойти до момента когда начнется ограничение.

Затем понижая амплитуду найти положение, в котором форма синусоиды будет наилучшей.Теперь можно выпаять подстроечник, замерить получившиеся величины сопротивлений и впаять максимально близкие значения.

Если вам требуется генератор синусоидального сигнала звуковой частоты, то можно обойтись и без осциллографа. Для этого, опять таки, лучше дойти до момента когда сигнал, на слух, начнет искажаться из-за подрезания, а затем убавить амплитуду. Убавлять следует до тех пор пока искажения не пропадут, а затем еще немного. Это необходимо т.к. на слух не всегда можно уловить искажения и в 10%.

Дополнительное усиление

Генератор синуса был собран на сдвоенном ОУ, и половина микросхемы осталась висеть в воздухе. Поэтому логично задействовать ее под регулируемый усилитель напряжения. Это позволило перенести переменный резистор из дополнительной цепи ОС генератора в каскад усилителя напряжения для регулировки выходного напряжения.

Применение дополнительного усилительного каскада гарантирует лучшее согласование выхода генератора с нагрузкой. Он был построен по классической схеме неинвертирующего усилителя.


Указанные номиналы позволяют изменять коэффициент усиления от 2 до 5. При необходимости номиналы можно пересчитать под требуемую задачу. Коэффициент усиления каскада задается соотношением:

K=1+R2/R1

Резистор R1 представляет из себя сумму последовательно включенных переменного и постоянного резисторов. Постоянный резистор нужен, чтобы при минимальном положении ручки переменного резистора коэффициент усиления не ушел в бесконечность.

Как умощнить выход

Генератор предполагался для работы на низкоомную нагрузку в несколько Ом. Разумеется ни один маломощный ОУ не сможет выдать необходимый ток.

Для умощнения, на выходе генератора разместился повторитель на TDA2030. Все вкусности такого применения этой микросхемы описаны в статье .

А вот так собственно выглядит схема всего синусоидального генератора с усилителем напряжения и повторителем на выходе:


Генератор синуса на мосту Вина можно собрать и на самой TDA2030 в качестве ОУ. Все зависит от требуемой точности и выбранной частоты генерации.

Если нет особых требований к качеству генерации и требуемая частота не превышает 80-100 кГц, но при этом предполагается работа на низкоомную нагрузку, то этот вариант вам идеально подойдет.

Заключение

Генератор на мосту Вина — это не единственный способ генерации синусоиды. Если вы нуждаетесь в высокоточной стабилизации частоты то лучше смотреть в сторону генераторов с кварцевым резонатором.

Однако, описанная схема, подойдет для подавляющего большинства случаев, когда требуется получение стабильного, как по частоте так и по амплитуде, синусоидального сигнала.

Генерация это хорошо, а как точно измерить величину переменного напряжения высокой частоты? Для это отлично подходит схема которая называется .

Материал подготовлен исключительно для сайта

Загрузка...