Автомобильный портал - ZadonskVokzal

Однокомпонентное жидкое ракетное топливо. Ракетные топлива: что Вы об этом знаете? Как развивалась эта отрасль

В общем случае нагрев рабочего тела присутствует как составляющая рабочего процесса теплового ракетного двигателя. Причем наличие источника теплоты - нагревателя формально обязательно (в частном случае его тепловая мощность может равняться нулю). Тип его можно характеризовать видом энергии, переходящей в теплоту. Таким образом получаем признак классификации, по которому тепловые ракетные двигатели по виду энергии, преобразуемой в тепловую энергию рабочего тела, делятся на электрические, ядерные (рис.10.1.) и химические (рис 13.1, уровень 2).

Схема, конструкция и достижимые параметры ракетного двигателя на химическом топливе во многом определяются агрегатным состоянием ракетного топлива. Ракетные двигатели на химическом топливе (в зарубежной литературе иногда называемые химическими ракетными двигателями) по этому признаку делятся на:

жидкостные ракетные двигатели - ЖРД, компоненты топлива которых в состоянии хранения на борту - жидкость (рис. 13.1, уровень 3; фото, фото),

ракетные двигатели твердого топлива - РДТТ (рис. 1.7, 9.4, фото, фото),

гибридные ракетные двигатели - ГРД, компоненты топлива которых находятся на борту в разных агрегатных состояниях (рис. 11.2).

Очевидным признаком классификации двигателей на химическом топливе является число компонентов ракетного топлива.

Например, ЖРД на однокомпонентном или на двухкомпонентном топливе, ГРД на трехкомпонентном топливе (по зарубежной терминологии - на трибридном топливе) (рис. 13.1, уровень 4).

По конструктивным признакам возможна классификация ракетных двигателей с выделением десятков рубрик, но основные отличия в выполнении целевой функции определяются схемой подачи компонентов в камеру сгорания. Наиболее характерна классификация по этому признаку ЖРД.

Классификация ракетных топлив.

РТ подразделяются на твердые и жидкие. Твердые ракетные топлива имеют ряд преимуществ перед жидкими, они длительно хранятся, не воздействуют на оболочку ракеты, не представляют опасности для работающего с ним персонала в связи с низкой токсичности.

Однако взрывной характер их горения создает трудности в их применении.

К твердым ракетным топливам относятся баллистные и кордитные пороха на основе нитроцеллюлозы.

Жидкостный реактивный двигатель, идея создания которого принадлежит К.Э.Циолковскому, наиболее распространен в космонавтике.

Жидкие РТ могут быть однокомпонентными и двухкомпонентными (окислитель и горючие).

К окислителям относятся: азотная кислота и окислы азота (двуокись, четырехокись), перекись водорода, жидкий кислород, фтор и его соединения.

В качестве горючего используется керосины, жидкий водород, гидразины. Наиболее широко используется гидразин и несимметричный диметилгидразин (НДМГ).

Вещества, входящие в состав жидких РТ обладают высокой агрессивностью и токсичностью к человеку. Поэтому перед медицинской службой стоит проблема проведения профилактических мероприятий по защите личного состава от острых и хронических отравлений КРТ, организации оказания неотложной помощи при поражениях.

В связи с этим и изучаются патогенез, клиника поражений, разрабатываются средства оказания неотложной помощи и лечения пораженных, создаются средства защиты кожи и органов дыхания, устанавливаются ПДК различных КРТ и необходимые гигиенические нормы.

Ракеты-носители и двигательные установки различных космических аппаратов являются преимущественной областью применения ЖРД.

К преимуществам ЖРД можно отнести следующие:

Самый высокий удельный импульс в классе химических ракетных двигателей (свыше 4 500 м/с для пары кислород-водород, для керосин-кислород - 3 500 м/с).

Управляемость по тяге: регулируя расход топлива, можно изменять величину тяги в большом диапазоне и полностью прекращать работу двигателя с последующим повторным запуском. Это необходимо при маневрировании аппарата в космическом пространстве.

При создании больших ракет, например, носителей, выводящих на околоземную орбиту многотонные грузы, использование ЖРД позволяет добиться весового преимущества по сравнению с твёрдотопливными двигателями (РДТТ). Во-первых, за счёт более высокого удельного импульса, а во-вторых за счёт того, что жидкое топливо на ракете содержится в отдельных баках, из которых оно подается в камеру сгорания с помощью насосов. За счет этого давление в баках существенно (в десятки раз) ниже, чем в камере сгорания, а сами баки выполняются тонкостенными и относительно лёгкими. В РДТТ контейнер топлива является одновременно и камерой сгорания, и должен выдерживать высокое давление (десятки атмосфер), а это влечёт за собой увеличение его веса. Чем больше объём топлива на ракете, тем больше размер контейнеров для его хранения, и тем больше сказывается весовое преимущество ЖРД по сравнению с РДТТ, и наоборот: для малых ракет наличие турбонасосного агрегата сводит на нет это преимущество.

Недостатки ЖРД:

ЖРД и ракета на его основе значительно более сложно устроены, и более дорогостоящи, чем эквивалентные по возможностям твёрдотопливные (несмотря на то, что 1 кг жидкого топлива в несколько раз дешевле твёрдого). Транспортировать жидкостную ракету необходимо с бо́льшими предосторожностями, а технология подготовки её к пуску более сложна, трудоемка и требует больше времени (особенно при использовании сжиженных газов в качестве компонентов топлива), поэтому для ракет военного назначения предпочтение в настоящее время оказывается твёрдотопливным двигателям, ввиду их более высокой надёжности, мобильности и боеготовности.

Компоненты жидкого топлива в невесомости неуправляемо перемещаются в пространстве баков. Для их осаждения необходимо применять специальные меры, например, включать вспомогательные двигатели, работающие на твёрдом топливе или на газе.

В настоящее время для химических ракетных двигателей (в том числе и для ЖРД) достигнут предел энергетических возможностей топлива, и поэтому теоретически не предвидится возможность существенного увеличения их удельного импульса, а это ограничивает возможности ракетной техники, базирующейся на использовании химических двигателей, уже освоенными двумя направлениями:

Космические полёты в околоземном пространстве (как пилотируемые, так и беспилотные).

Исследование космоса в пределах Солнечной системы с помощью автоматических аппаратов (Вояджер, Галилео).

омпоненты топлива

Выбор компонентов топлива является одним из важнейших решений при проектировании ЖРД, предопределяющий многие детали конструкции двигателя и последующие технические решения. Поэтому выбор топлива для ЖРД выполняется при всестороннем рассмотрении назначения двигателя и ракеты, на которой он устанавливается, условий их функционирования, технологии производства, хранения, транспортировки к месту старта и т. п.

Одним из важнейших показателей, характеризующих сочетание компонентов является удельный импульс, который имеет особенно важное значение при проектировании ракет-носителей космических аппаратов, так как от него в сильнейшей степени зависит соотношение массы топлива и полезного груза, а следовательно, размеры и масса всей ракеты (см. Формула Циолковского), которые при недостаточно высоком значении удельного импульса могут оказаться нереальными. В таблице 1 приведены основные характеристики некоторых сочетаний компонентов жидкого топлива.

Помимо удельного импульса при выборе компонентов топлива, решающую роль могут сыграть и другие показатели свойств топлива, в том числе:

Плотность, влияющая на размеры баков компонентов. Как следует из табл. 1, водород является горючим, с самым большим удельным импульсом (при любом окислителе), однако он обладает крайне низкой плотностью. Поэтому первые (самые большие) ступени ракет-носителей обычно используют другие (менее эффективные, но более плотные) виды горючего, например, керосин, что позволяет уменьшить размеры первой ступени до приемлемых. Примерами такой «тактики» служат ракета Сатурн-5, первая ступень которой использует компоненты кислород/керосин, а 2-я и 3-я ступени - кислород/водород, и система Спейс Шаттл, в которой в качестве первой ступени использованы твёрдотопливные ускорители.

Температура кипения, которая может накладывать серьёзные ограничения на условия эксплуатации ракеты. По этому показателю компоненты жидкого топлива подразделяют на криогенные - охлаждённые до крайне низких температур сжиженные газы, и высококипящие - жидкости имеющие температуру кипения выше 0 °C.

Криогенные компоненты не могут долго храниться, и транспортироваться на большие расстояния, поэтому они должны изготовляться (по крайней мере сжижаться) на специальных энергоёмких производствах, находящихся в непосредственной близости от места старта, что делает пусковую установку совершенно немобильной. Помимо этого, криогенные компоненты обладают и другими физическими свойствами, предъявляющими дополнительные требования к их использованию. Например, наличие даже незначительного количества воды или водяного пара в ёмкостях со сжиженными газами приводит к образованию очень твёрдых кристаллов льда, которые при попадании в топливную систему ракеты воздействуют на её части как абразивный материал и могут стать причиной тяжёлой аварии. За время многочасовой подготовки ракеты к старту на ней намерзает большое количество инея, превращающегося в лёд, и падение его кусков с большой высоты представляет опасность для персонала, занятого в подготовке, а также для самой ракеты и стартового оборудования. Сжиженные газы после заправки ими ракеты начинают испаряться, и до момента старта их нужно непрерывно пополнять через специальную систему подпитки. Избыток газа, образующегося при испарении компонентов, необходимо отводить таким образом, чтобы окислитель не смешивался с горючим, образуя взрывчатую смесь.

Высококипящие компоненты гораздо более удобны при транспортировке, хранении и оперировании с ними, поэтому в 50е годы ХХ в они вытеснили криогенные компоненты из области военного ракетостроения. В дальнейшем эта область всё в большей степени стала заниматься твёрдым топливом. Но при создании космических носителей криогенные топлива пока сохраняют своё положение за счёт высокой энергетической эффективности, а для выполнения маневров в космическом пространстве, когда топливо должно сохраняться в баках месяцами, а то и годами, наиболее приемлемыми являются высококипящие компоненты. Иллюстрацией такого «разделения труда» могут служить ЖРД, задействованные в проекте Аполлон: все три ступени ракеты-носителя Сатурн-5 используют криогенные компоненты, а двигатели лунного корабля, предназначенные для коррекции траектории и для маневров на окололунной орбите, - высококипящие несимметричный диметилгидразин и тетраоксид диазота.

Химическая агрессивность. Этим качеством обладают все окислители. Поэтому наличие в баках, предназначенных для окислителя, даже незначительных количеств органических веществ (например, жировых пятен, оставленных человеческими пальцами) может вызвать возгорание, вследствие которого может загореться материал самого бака (алюминий, магний, титан и железо очень энергично горят в среде ракетного окислителя). Из-за агрессивности окислители, как правило, не используются в качестве теплоносителей в системах охлаждения ЖРД, а в газогенераторах ТНА, для снижения тепловой нагрузки на турбину рабочее тело перенасыщается горючим, а не окислителем. При низких температурах жидкий кислород является, пожалуй, самым безопасным окислителем, потому, что альтернативные окислители, такие как тетраоксид диазота или концентрированная азотная кислота вступают в реакцию с металлами, и хотя они являются высококипящими окислителями, которые могут подолгу храниться при нормальной температуре, время службы баков, в которых они находятся, ограничено.

Токсичность компонентов топлива и продуктов их горения является серьёзным ограничителем их использования. Например, фтор, как следует из табл.1., как окислитель, более эффективен, чем кислород, однако в паре с водородом он образует фтороводород - вещество крайне токсичное и агрессивное, и выброс нескольких сотен, тем более, тысяч тонн такого продукта сгорания в атмосферу при запуске большой ракеты, сам по себе является крупной техногенной катастрофой, даже при удачном запуске. А в случае аварии, и разлива такого количества этого вещества, ущерб не поддаётся учёту. Поэтому фтор не используется в качестве компонента топлива. Токсичными являются и тетраоксид азота, азотная кислота и несимметричный диметилгидразин. В настоящее время предпочитаемым (с экологической точки зрения) окислителем является кислород, а горючим - водород, за которым следует керосин.

Твердое ракетное топливо представляет собой твёрдое вещество (смесь веществ), которое способно гореть без воздуха и при этом выделять много газообразных соединений, разогретых до высокой температуры. Такие составы используют для создания в двигателях ракет.

Ракетное топливо используется как источник энергии для Кроме твердого горючего, существуют ещё гелеобразные, жидкие и гибридные аналоги. У каждой разновидности горючего имеются свои преимущества и недостатки. Жидкие топлива бывают однокомпонентными и двухкомпонентными (горючее + окислитель). Гелеобразные топлива представляют собой составы, загущенные до состояния геля с помощью Гибридные топлива - это системы, которые включают в себя твердое горючее и жидкий окислитель.

Первые разновидности ракетного горючего были именно твердыми. В качестве рабочего вещества применялся порох и его аналоги, которые использовались в военном деле и для создания фейерверков. Сейчас эти соединения применяются лишь для изготовления небольших модельных ракет, как ракетное топливо. Состав позволяет запускать небольшие (до 0,5 м) ракеты на несколько сотен метров в высоту. Двигателем в них выступает маленький цилиндр. Он начинен твердой горючей смесью, которая поджигается раскаленной проволокой и горит всего несколько секунд.

Ракетное топливо твердого типа чаще всего состоит из окислителя, горючего и катализатора, позволяющего поддерживать стойкое горение после воспламенения состава. В исходном состоянии данные материалы порошкообразные. Чтобы сделать из них ракетное топливо, необходимо создать плотную и которая будет гореть долго, ровно и непрерывно. В твердотопливных двигателях ракет используются: в качестве окислителя, (углерод), как горючее, и сера, как катализатор. Это состав черного пороха. Второй комбинацией материалов, которые применяются, как ракетное топливо являются: бертолетова соль, алюминиевая или магниевая пудра и хлорат натрия. Данный состав называют ещё белым порохом. Твердые горючие наполнители для военных ракет подразделяются на баллиститные (нитроглицериновые спрессованные пороха) и смесевые, которые применяют в форме канальных шашек.

Твердотопливный ракетный двигатель работает следующим образом. После воспламенения топливо начинает гореть с заданной скоростью, выбрасывая через сопло горячее газообразное вещество, что обеспечивает тягу. Горючее в двигателе горит, пока не кончится. Поэтому остановить процесс и выключить двигатель невозможно, пока наполнитель не сгорит до конца. Это один из серьезных минусов твердотопливных двигателей, по сравнению с другими аналогами. Однако в настоящих космических баллистических носителях твердотопливные материалы применяются только на начальном этапе полета. На следующих этапах используются другие типы ракетного горючего, поэтому недостатки твердотопливных составов существенной проблемы не представляют.

«... И нет ничего нового под солнцем»
(Экклизиаст 1:9).
О топливах, ракетах, ракетных двигателях писалось, пишут и будут писать.


Одной из первых работ по топливам ЖРД можно считать книгу В.П. Глушко "Жидкое топливо для реактивных двигателей", изданную в 1936 г.

Для меня тема показалась интересной, связанной с моей бывшей специальностью и учёбой в ВУЗе, тем паче "приволок" её мой младший отпрыск: "Шеф давай замесим, что нить такое и запустим, а если лень, то мы сами "сообразим". Видимо, не дают покоя.

Так хочется правильно взорвать свой ракетный двигатель.


"Соображать" будем вместе, под строгим родительским контролем. Руки ноги должны быть целыми, чужие тем более.

Важный параметр - коэффициент избытка окислителя (обозн. греческой "α" с индексом "ок.") и массовое соотношение компонентов Kм.

Kм=(dmок./dt)/(dmг../dt), т.е. отношение массового расхода окислителя к массовому расходу горючего. Он специфичен для каждого топлива. В идеальном случае представляет собой стехиометрическое соотношение окислителя и горючего, т.е. показывает сколько кг окислителя нужно для окисления 1 кг горючего. Однако реальные значения отличаются от идеальных. Соотношение реального Kм к идеальному и есть коэффициент избытка окислителя.

Как правило, αок.<=1. И вот почему. Зависимости Tk(αок.) и Iуд.(αок.) нелинейны и для многих топлив последняя имеет максимум при αок. не при стехиометрическом соотношении компонентов, т.е макс. значения Iуд. получаются при некотором снижении количества окислителя по отношению к стехиометрическому. Ещё немного терпения, т.к. не могу обойти понятие: . Это пригодится и в статье, и в повседневной жизни.

Кратко энтальпия – это энергия. Для статьи важны две её "ипостаси":
Термодинамическая энтальпия - количество энергии, затраченной на образование вещества из исходных химических элементов. Для веществ, состоящих из одинаковых молекул (H 2 , O 2 и пр.), она равна нулю.
Энтальпия сгорания - имеет смысл только при условии протекания химической реакции. В справочниках можно найти экспериментально полученные при нормальных условиях значения этой величины. Чаще всего для горючих это полное окисление в среде кислорода, для окислителей – окисление водорода заданным окислителем. Причем значения могут быть как положительными, так и отрицательными в зависимости от вида реакции.

"Сумму термодинамической энтальпии и энтальпии сгорания называют полной энтальпией вещества. Собственно, этой величиной и оперируют при тепловом расчёте камер ЖРД."

Требования к ЖРТ:
-как к источнику энергии;
-как к веществу, которое приходится (на данном уровне развития технологий) использовать для охлаждения РД и ТНА, иногда к наддуву баков с РТ, предоставлять ему объём (баки РН) и т.д.;
-как к веществу вне ЖРД, т.е. при хранении, транспортировке, заправке, испытаниях, экологической безопасности и т.д.

Такая градация относительна условна, но в принципе отражает суть. Назову эти требования так: №1, №2, №3. Кто-то может дополнить список в комментариях.
Эти требования классический пример , которые "тянут" создателей РД в разные стороны:

# С точки зрения источника энергии ЖРД (№1)

Т.е. необходимо получить макс. Iуд. Не буду дальше забивать головы всем, в общем случае:

При прочих важных параметрах для №1 нас интересует R и Т (со всеми индексами).
Нужно, чтобы: молекулярная масса продуктов сгорания была минимальной, максимальным было удельное теплосодержание.

# С точки зрения конструктора РН (№2):

ТК должны иметь максимальную плотность, особенно на первых ступенях ракет, т.к. они самые объёмные и имеют мощнейшие РД, с большим секундным расходом. Очевидно, что это не согласуется с требованием под №1.

# С эксплуатационных задач важны (№3):

Химическая стабильность ТК;
-простота заправки, хранения, перевозки и изготовления;
-экологическая безопасность (во всём "поле" применения), а именно токсичность, себестоимость производства и транспортировки и т.д. и безопасность при работе РД (взрывоопасность).

Подробнее смотри "Сага о ракетных топливах-обратная сторона медали".


Надеюсь, ещё никто не уснул? У меня ощущение, что разговариваю сам с собой. Скоро будет про спирт, не отключайтесь!

Конечно, это лишь вершина айсберга. Ещё влезают сюда дополнительные требования, из-за которых следует искать КОНСЕНСУСЫ и КОМПРОМИСЫ. Один из компонентов обязательно должен иметь удовлетворительные (лучше отличные) свойства охладителя, т.к. на данном уровне технологий приходится охлаждать КС и сопло, а также защитить критическое сечение РД:

На фотографии сопло ЖРД XLR-99: отчётливо видна характерная особенность конструкции американских ЖРД 50-60 годов – трубчатая камера:

Также требуется (как правило) один из компонентов использовать как рабочее тело для турбины ТНА:

Для топливных компонентов "большое значение имеет давление насыщенных паров (это грубо говоря давление, при котором жидкость начинает кипеть при данной температуре). Этот параметр сильно влияет на разработку насосов и вес баков."/ С.С. Факас/

Важный фактор-агрессивность ТК к материалам (КМ) ЖРД и баков для их хранения.
Если ТК очень "вредные" (как некоторые люди), тогда инженерам приходится тратиться на ряд специальных мер по защите своих конструкций от топлива.

Классификация ЖРТ - чаще всего по давлению насыщенных паров или , а проще говоря - температуре кипения при нормальном давлении.

Высококипящие компоненты ЖРТ.

Такие ЖРД можно классифицировать как многотопливные.
ЖРД на трехкомпонентном топливе (фтор+водород+литий) разрабатывался в .

Двухкомпонентные топлива состоят из окислителя и горючего.
ЖРД Bristol Siddeley BSSt.1 Stentor: двухкомпонентный ЖРД (H2O2+керосин)

Окислители

Кислород

Химическая формула-О 2 (дикислород, американское обозначение Oxygen-OX).
В ЖРД применяется жидкий, а не газообразный кислород-Liquid oxygen (LOX-кратко и всё понятно).
Молекулярная масса (для молекулы)-32г/моль. Для любителей точности: атомная масса (молярная масса)=15,99903;
Плотность=1,141 г/см³
Температура кипения=90,188K (−182,96°C)

С точки зрения химии, идеальный окислитель. Он использовался в первых баллистических ракетах ФАУ, ее американских и советских копиях. Но его температура кипения не устраивала военных. Требуемый диапазон рабочих температур от –55°C до +55°C (большое время подготовки к старту, малое время нахождения на боевом дежурстве).

Очень низкая коррозионная активность. Производство давно освоено, стоимость небольшая: менее $0,1 (по-моему, дешевле литра молока в разы).
Недостатки:

Криогенный - необходимо захолаживание и постоянная дозаправка для компенсации потерь перед стартом. Еще и может нагадить другим ТК (керосину):

На фото: створки защитных устройств заправочного автостыка керосина (ЗУ-2), за 2 минуты до окончания циклограммы при выполнении операции ЗАКРЫТЬ ЗУ из-за обледенения не полностью закрылись . Одновременно из-за обледенения не прошел сигнал о съезде ТУА с пусковой установки. Пуск проведен на следующий день.

Агрегат-заправщик РБ жидким кислородом снят с колес и установлен на фундаменте.

Затруднено использование в качестве охладителя КС и сопла ЖРД.

"АНАЛИЗ ЭФФЕКТИВНОСТИ ПРИМЕНЕНИЯ КИСЛОРОДА В КАЧЕСТВЕ ОХЛАДИТЕЛЯ КАМЕРЫ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ" САМОШКИН В.М., ВАСЯНИНА П.Ю., Сибирский государственный аэрокосмический университет имени академика М.Ф. Решетнева

Сейчас всеми изучается возможность использования переохлажденного кислорода либо кислорода в шугообразном состоянии, в виде смеси твердой и жидкой фаз этого компонента. Вид будет примерно такой же, как эта красивая ледяная шуга в бухточке правее Шаморы:


Пофантазируйте: вместо Н 2 О представьте ЖК (LOX).

Шугирование позволит увеличить общую плотность окислителя.

Пример захолаживания (переохлаждения) БР Р-9А: в качестве окислителя в ракете впервые было решено использовать переохлажденный жидкий кислород, что позволило уменьшить общее время подготовки ракеты к пуску и повысить степень ее боеготовности.

Примечание: почему-то за эту же самую процедуру нагибал (почти "чморил") Илона Маска известный писатель Дмитрий Конаныхин.
См:

Озон -O 3

Молекулярная масса=48 а.е.м., молярная масса=47,998 г/моль
Плотность жидкости при -188 °C (85,2 К) составляет 1,59(7) г/см³
Плотность твёрдого озона при −195,7 °С (77,4 К) равна 1,73(2) г/см³
Температура плавления −197,2(2) °С (75,9 К)

Давно инженеры мучились с ним, пытаясь использовать в качестве высокоэнергетического и вместе с тем экологически чистого окислителя в ракетной технике.

Общая химическая энергия, освобождающаяся при реакции сгорания с участием озона, больше, чем для простого кислорода, примерно на одну четверть (719 ккал/кг). Больше будет, соответственно, и Iуд. У жидкого озона большая плотность, чем у жидкого кислорода (1,35 против 1,14 г/см³ соответственно), а его Т кипения выше (−112 °C и −183 °C соответственно).

Пока непреодолимым препятствием является химическая неустойчивость и взрывоопасность жидкого озона с разложением его на O и O2, при котором возникает движущаяся со скоростью около 2 км/с детонационная волна и развивается разрушающее детонационное давление более 3·107 дин/см2 (3 МПа), что делает применение жидкого озона невозможным при нынешнем уровне техники, за исключением использования устойчивых кислород-озоновых смесей (до 24 % озона). Преимуществом подобной смеси также является больший удельный импульс для водородных двигателей, по сравнению с озон-водородными. На сегодняшний день такие высокоэффективные двигатели, как РД-170, РД-180, РД-191, а также разгонные вакуумные двигатели вышли по Iуд на близкие к предельным значениям параметры и для повышения УИ осталось лишь одна возможность, связанная с переходом на новые виды топлива.

Азотная кислота -HNO 3

Состояние - жидкость при н.у.
Молярная масса 63.012 г/моль (не важно, что я использую или молекулярную массу-это не меняет сути)
Плотность=1,513 г/см³
Т. плав.=-41,59 °C,Т. кип.=82,6 °C

HNO3 имеет высокую плотность, невысокую стоимость, производится в больших количествах, достаточно стабильна, в том числе при высоких температурах, пожаро- и взрывобезопасная. Главное ее преимущество перед жидким кислородом в высокой температуре кипения, а, следовательно, в возможности неограниченно долго храниться без всякой теплоизоляции. Молекула азотной кислоты HNO 3 – почти идеальный окислитель. Она содержит в качестве “балласта” атом азота и “половинку” молекулы воды, а два с половиной атома кислорода можно использовать для окисления топлива. Но не тут-то было! Азотная кислота настолько агрессивное вещество, что непрерывно реагирует само с собой–атомы водорода отщепляются от одной молекулы кислоты и присоединяются к соседним, образуя непрочные, но чрезвычайно химически активные агрегаты. Даже самые стойкие сорта нержавеющей стали медленно разрушаются концентрированной азотной кислотой (в результате на дне бака образовывался густой зеленоватый «кисель», смесь солей металлов). Для уменьшения коррозионной активности в азотную кислоту стали добавлять различные вещества, всего 0,5% плавиковой (фтористоводородной) кислоты уменьшают скорость коррозии нержавеющей стали в десять раз.

Для повышения уд.импульса в кислоту добавляют двуокись азота (NO 2). Добавка диоксида азота в кислоту связывает попадающую в окислитель воду, что уменьшает коррозионную активность кислоты, увеличивается плотность раствора, достигая максимума при 14% растворенного NO 2 . Эту концентрацию использовали американцы для своих боевых ракет.

Мы почти 20 лет искали подходящую тару для азотной кислоты. Очень трудно при этом подобрать конструкционные материалы для баков, труб, камер сгорания ЖРД.

Вариант окислителя, что выбрали в США, с 14 % двуокиси азота. А наши ракетчики поступили иначе. Надо было догонять США любой ценой, поэтому окислители советских марок – АК-20 и АК-27 – содержали 20 и 27 % тетраоксида.

Интересный факт: в первом советском ракетном истребителе БИ-1 были использованы для полетов азотная кислота и керосин.

Баки и трубы пришлось изготовлять из монель-металла: сплава никеля и меди, он стал очень популярным конструкционным материалом у ракетчиков. Советские рубли были почти на 95 % сделаны из этого сплава.

Недостатки: терпимая "гадость". Коррозионною активна. Удельный импульс недостаточно высок. В настоящее время в чистом виде почти не используется.

Азотный тетраоксид -АТ (N 2 O 4)

Молярная масса=92,011 г/моль
Плотность=1,443 г/см³


"Принял эстафету" от азотной кислоты в военных двигателях. Обладает саомовоспламеняемостью с гидразином, НДМГ. Низкокипящий компонент, но может долго хранится при принятии особых мер.

Недостатки: такая же гадость, как и HNO 3 , но со своими причудами. Может разлагаться на окись азота. Токсичен. Низкий удельный импульс. Часто использовали и используют окислитель АК-NN. Это смесь азотной кислоты и азотного тетраоксида, иногда её называют "красной дымящейся азотной кислотой". Цифры обозначают процентное кол-во N 2 O 4 .

В основном эти окислители используются в ЖРД военного назначения и ЖРД КА благодаря своим свойствам: долгохранимость и самовоспламеняемость. Характерные горючие для АТ это НДМГ и гидразин.

Фтор -F 2

Атомная масса=18,998403163 а. е. м. (г/моль)
Молярная масса F2, 37,997 г/моль
Температура плавления=53,53 К (−219,70 °C)
Температура кипения=85,03 К (−188,12 °C)
Плотность (для жидкой фазы), ρ=1,5127 г/см³

Химия фтора начала развиваться с 1930-х годов, особенно быстро - в годы 2-й мировой войны 1939-45 годов и после нее в связи с потребностями атомной промышленности и ракетной техники. Название "Фтор" (от греч. phthoros - разрушение, гибель), предложенное А. Ампером в 1810 году, употребляется только в русском языке; во многих странах принято название "флюор" . Это прекрасный окислитель с точки зрения химии. Окисляет и кислород, и воду, и вообще практически всё. Расчеты показывают, что максимальный теоретический Iуд можно получить на паре F2-Be (бериллий)-порядка 6000 м/с!

Супер? Облом, а не "супер"...

Врагу такой окислитель не пожелаешь.
Чрезвычайно коррозионною активен, токсичен, склонен к взрывам при контакте с окисляющимися материалами. Криогенен. Любой продукт сгорания также имеет почти те же "грехи": жутко коррозионны и токсичны.

Техника безопасности. Фтор токсичен, предельно допустимая концентрация его в воздухе примерно 2·10-4 мг/л, а предельно допустимая концентрация при экспозиции не более 1 ч составляет 1,5·10-3мг/л.

ЖРД 8Д21 применение пары фтор + аммиак давало удельный импульс на уровне 4000 м/с.
Для пары F 2 +H 2 получается Iуд=4020 м/с!
Беда: HF-фтороводород на "выхлопе".

Стартовая позиция после запуска такого "энергичного движка"?
Лужа жидких металлов и прочих растворённых в плавиковой кислоте химических и органических объектов!
Н 2 +2F=2HF, при комнатной температуре существует в виде димера H 2 F 2 .

Смешивается с водой в любом отношении с образованием фтороводородной (плавиковой) кислоты. А использованию его в ЖРД КА не реально из-за убийственной сложности хранения и разрушительного действия продуктов сгорания.

Всё то же самое относится и к остальным жидким галогенам, например, к хлору.

Фтороводородный ЖРД тягой 25 т для оснащения обеих ступеней ракетного ускорителя предполагалось разработать в В.П. Глушко на базе отработанного ЖРД тягой 10 т на фтороаммиачном (F 2 +NH 3) топливе.

Перекись водорода -H 2 O 2 .

Она упомянута мною выше в однокомпонентных топливах.

Walter HWK 109-507: преимущества в простоте конструкции ЖРД. Яркий пример такого топлива - перекись водорода.

Alles: список более-менее реальных окислителей закончен. Акцентирую внимание на HClО 4 . Как самостоятельные окислители на основе хлорной кислоты представляют интерес только: моногидрат (Н 2 О+ClО 4)-твёрдое кристаллическое вещество и дигидрат (2НО+НСlО 4)-плотная вязкая жидкость. Хлорная кислота (которая из-за Iуд сама по себе бесперспективна), при этом представляет интерес в качестве добавки к окислителям, гарантирующей надёжность самовоспламенения топлива.

Окислители можно классифицировать и так:

Итоговый (чаще используемый) список окислителей в связке с реальными же горючими:

Примечание: если хотите перевести один вариант удельного импульса в другой, то можно пользоваться простой формулой: 1 м/с = 9,81 с.
В отличие от них - горючих у нас .

Горючие

Основные характеристики двухкомпонентных ЖРТ при pк/pа=7/0,1 МПа

По физико-химическому составу их можно разбить на несколько групп:

Углеводородные горючие.
Низкомолекулярные углеводороды.
Простые вещества: атомарные и молекулярные.

Для этой темы пока практический интерес представляет лишь водород (Hydrogenium).
Na, Mg, Al, Bi, He, Ar, N 2 , Br 2 , Si, Cl 2 , I 2 и др. я не буду рассматривать в этой статье.
Гидразиновые топлива ("вонючки").

Просыпайтесь сони - мы добрались уже до спирта(С2Н5ОН).

Поиски оптимального горючего начались с освоения энтузиастами ЖРД. Первым широко использовавшимся горючим стал спирт (этиловый) , применявшийся на первых
советских ракетах Р-1, Р-2, Р-5 ("наследство" ФАУ-2) и на самой Vergeltungswaffe-2.

Вернее раствор 75% этилового спирта (этанол, этиловый спирт, метилкарбинол, винный спирт или алкоголь, часто в просторечии просто «спирт») - одноатомный спирт с формулой C 2 H 5 OH (эмпирическая формула C 2 H 6 O), другой вариант: CH 3 -CH 2 -OH
У этого горючего два серьёзных недостатка , которые очевидно не устраивали военных: низкие энергетические показатели и .

Сторонники здорового образа жизни (спиртофобы) пытались решить вторую проблему с помощью фурфурилового спирта. Это ядовитая, подвижная, прозрачная, иногда желтоватая (до темно-коричневого), со временем краснеющая на воздухе жидкость. ВАРВАРЫ!

Хим. формула:C 4 H 3 OCH 2 OH, Рац. формула:C 5 H 6 O 2 . Отвратительная жижа.К питью не годна.

Группа углеводородов.

Керосин

Условная формула C 7,2107 H 13,2936
Горючая смесь жидких углеводородов (от C 8 до C 15) с температурой кипения в интервале 150-250 °C, прозрачная, бесцветная (или слегка желтоватая), слегка маслянистая на ощупь
плотность - от 0,78 до 0,85 г/см³ (при температуре 20°С);
вязкость - от 1,2 – 4,5 мм²/с (при температуре 20°С);
температура вспышки - от 28°С до 72°С;
теплота сгорания - 43 Мдж/кг.

Моё мнение: о точной молярной массе писать бессмысленно

Керосин является смесью из различных углеводородов, поэтому появляются страшные дроби (в хим. формуле) и "размазанная" температура кипения. Удобное высококипящее горючее. Используется давно и успешно во всём мире в двигателях и в авиации. Именно на нем до сих пор летают "Союзы". Малотоксичен (пить настоятельно не рекомендую), стабилен. Всё же керосин опасен и вреден для здоровья (употребление внутрь).
Минздрав категорически против!
Солдатские байки: хорошо помогает избавиться от противных .

Однако и он требует осторожности в обращении при эксплуатации:

Существенные плюсы: сравнительно недорог, освоен в производстве. Пара керосин-кислород идеальна для первой ступени. Ее удельный импульс на земле 3283 м/с, пустотный 3475 м/с. Недостатки. Относительно малая плотность.

Американские ракетные керосины Rocket Propellant-1 или Refined Petroleum-1


Относительно был .
Для повышения плотности лидерами освоения космоса были разработаны синтин (СССР) и RJ-5 (США).
.

Керосин имеет склонность к отложению смолистых осадков в магистралях и тракте охлаждения, что отрицательно сказывается на охлаждении. На это его нехорошее свойство педалируют .
Керосиновые двигатели наиболее освоены в СССР.

Шедевр человеческого разума и инженерии наша "жемчужина" РД-170/171:

Теперь более корректным названием для горючих на основе керосина стал термин -"углеводородное горючее", т.к. от керосина, который жгли в безопасных керосиновых лампах И. Лукасевича и Я. Зеха, применяемое УВГ "ушло" очень .

На самом деле "Роскосмос" дезу выдаёт:

После того, как в ее баки закачают компоненты топлива - нафтил (ракетный керосин ), сжиженный кислород и пероксид водорода, космическая транспортная система будет весить более 300 тонн (в зависимости от модификации РН.

Низкомолекулярные углеводороды

Метан -CH4


Молярная масса: 16,04 г/моль
Плотность газ (0 °C) 0,7168 кг/м³;
жидкость (−164,6 °C) 415 кг/м³
Т. плав.=-182,49 °C
Т. кип.=-161,58 °C

Всеми сейчас рассматривается как перспективное и дешёвое топливо, как альтернатива керосину и водороду.
Главный конструктор Владимир Чванов:

Удельный импульс у двигателя на СПГ высокий, но это преимущество нивелируется тем, что у метанового топлива меньшая плотность, поэтому в сумме получается незначительное энергетическое преимущество. С конструкционной точки зрения метан привлекателен. Чтобы освободить полости двигателя, нужно только пройти цикл испарения - то есть двигатель легче освобождается от остатков продуктов. За счет этого метановое топливо более приемлемо с точки зрения создания двигателя многоразового использования и летательного аппарата многоразового применения.

Недорог, распространен, устойчив, малотоксичен. По сравнению с водородом имеет более высокую температуру кипения, а удельный импульс в паре с кислородом выше, чем у керосина: около 3250-3300 м/с на земле. Неплохой охладитель.

Недостатки. Низкая плотность (вдвое ниже чем у керосина). При некоторых режимах горения может разлагаться с выделением углерода в твердой фазе, что может привести к падению импульса из-за двухфазности течения и резкому ухудшению режима охлаждения в камере из-за отложения сажи на стенках КС. В последнее время идут активные НОР и НИОКР в области его применения (наряду с пропаном и природным газом) даже в направлении модификации уже сущ. ЖРД (в частности такие работы были проведены над ).


«Роскосмос» уже в 2016 году приступил к разработке силовой установки на сжиженном природном газе.

Или "Kinder Surpeis", как пример: американский Raptor engine от Space X:

К этим топливам можно отнести пропан и природный газ. Основные их характеристики, как горючих, близки (за исключением большей плотности и более высокой температуры кипения) к УВГ. И имеются такие же проблемы при их использовании.

Особняком среди горючих позиционируется -H 2 (Жидкий: LH 2).


Молярная масса водорода равна 2 016 г / моль или приближенно 2 г / моль.
Плотность (при н. у.)=0,0000899 (при 273 K (0 °C)) г/см³
Температура плавления=14,01K (-259,14 °C);
Температура кипения=20,28K (-252,87 °C);


Использование пары LOX-LH 2 предложено еще Циолковским, но реализовано другими:

С точки зрения термодинамики Н 2 идеальное рабочее тело как для самого ЖРД, так и для турбины ТНА. Отличный охладитель, при чем как в жидком, так и в газообразном состоянии. Последний факт позволяет не особо бояться кипения водорода в тракте охлаждения и использовать газифицированный таким образом водород для привода ТНА.

Такая схема реализована в Aerojet Rocketdyne RL-10-просто шикарный (с инженерной точки зрения) движок:

Наш аналог (даже лучше , т.к. моложе): РД-0146 (Д, ДМ) - безгазогенераторный жидкостный ракетный двигатель, разработанный Конструкторским бюро химавтоматики в Воронеже.

Особенно эффективен с сопловым насадком из материала «Граурис». Но пока не летает

Этот ТК обеспечивает высокий удельный импульс-в паре с кислородом 3835 м/с.

Из реально используемых это самый высокий показатель. Эти факторы обуславливают пристальный интерес к этому горючему. Экологически чист, на "выходе" в контакте с О 2: вода (водяной пар). Распространен, практически неограниченные запасы. Освоен в производстве. Нетоксичен. Однако есть очень много ложек дегтя в этой бочке мёда.

1. Чрезвычайно низкая плотность. Все видели огромные водородные баки РН "Энергия" и МТКК "Шаттл". Из-за низкой плотности применим (как правило) на верхних ступенях РН.

Кроме того, низкая плотность ставит непростую задачу для насосов: насосы водорода многоступенчатые для того что бы обеспечить нужный массовый расход и при этом не кавитировать.

По этой же причине приходится ставить т.н. бустерные насосные агрегаты горючего (БНАГ) сразу за заборным устройством в баках, дабы облегчить жизнь основному ТНА.

Ещё насосы водорода для оптимальных режимов требуют значительно большей частоты вращения ТНА.

2. Низкая температура. Криогенное топливо. Перед заправкой необходимо проводить многочасовое захолаживание (и/или переохлаждение) баков и всего тракта. Баки РН "Falocn 9FT" - взгляд изнутри:

Подробнее о "сюрпризах":
"МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ТЕПЛОМАССООБМЕННЫХ ПРОЦЕССОВ В ВОДОРОДНЫХ СИСТЕМАХ" Н0Р В.А. ГордеевВ.П. Фирсов, А.П. Гневашев, Е.И. Постоюк
ФГУП «ГКНПЦ им. М.В. Хруничева, КБ «Салют»; "Московский авиационный институт (Государственный технический университет)

В работе дана характеристика основных математических моделей тепломассообменных процессов в баке и магистралях водорода кислородно-водородного разгонного блока 12КРБ. Выявлены аномалии в подаче водорода в ЖРД и предложено их математическое описание. Модели отработаны в ходе стендовых и летных испытаний, что дало возможность на их базе прогнозировать параметры серийных разгонных блоков различных модификаций и принимать необходимые технические решения по совершенствованию пневмогидравлических систем.


Низкая температура кипения затрудняет и закачку в баки и хранение этого топлива в баках и хранилищах.

3. Жидкий водород обладает некоторыми свойствами газа:

Коэффициент сжимаемости (pv/RT) при 273,15 К: 1,0006 (0,1013 МПа), 1,0124 (2,0266 МПа), 1,0644 (10,133 МПа), 1,134 (20,266 МПа), 1,277 (40,532 МПа) ;
Водород может находиться в орто- и пара-состояниях. Ортоводород (о-Н2) имеет параллельную (одного знака) ориентацию ядерных спинов. Пара-водород (п-Н2)-антипараллельную.

При обычных и высоких температурах Н 2 (нормальный водород, н-Н2) представляет собой смесь 75% орто- и 25% пара-модификаций, которые могут взаимно превращаться друг в друга (орто-пара-превращение). При превращении о-Н 2 в п-Н 2 выделяется тепло (1418 Дж/моль) .


Это всё накладывает дополнительные трудности в проектировании магистралей, ЖРД, ТНА, циклограммы работы, и особенно насосов.

4. Газообразный водород быстрее других газов распространяется в пространстве, проходит через мелкие поры, при высоких температурах сравнительно легко проникает сквозь сталь и другие материалы. Н 2г обладает высокой теплопроводностью, равной при 273,15 К и 1013 гПа 0,1717 Вт/(м*К) (7,3 по отношению к воздуху).

Водород в обычном состоянии при низких температурах малоактивен, без нагревания реагирует лишь с F 2 и на свету с Сl 2 . С неметаллами водород взаимодействует активнее, чем с металлами. С кислородом реагирует практически необратимо, образуя воду с выделением 285,75 МДж/моль тепла;

5. Со щелочными и щелочно-земельными металлами, элементами III, IV, V и VI группы периодической системы, а также с интерметаллическими соединениями водород образует гидриды. Водород восстанавливает оксиды и галогениды многих металлов до металлов, ненасыщенные углеводороды – до насыщенных (см. ).
Водород очень легко отдает свой электрон. В растворе отрывается в виде протона от многих соединений, обусловливая их кислотные свойства. В водных растворах Н+ образует с молекулой воды ион гидроксония Н 3 О. Входя в состав молекул различных соединений, водород склонен образовывать со многими электроотрицательными элементами (F, О, N, С, В, Cl, S, Р) водородную связь.

6. Пожароопастность и взрывоопасность. Можно не рассусоливать: гремучую смесь все знают.
Смесь водорода с воздухом взрывается от малейшей искры в любой концентрации - от 5 до 95 процентов.

Впечатляет Space Shuttle Main Engine (SSME)?


Теперь прикиньте его стоимость!
Вероятно, увидев это и посчитав затраты (стоимость вывода на орбиту 1 кг ПН), законодатели и те кто рулит бюджетом США и NASA в частности... решили "ну его на фиг".
И я их понимаю - на РН "Союз" и дешевле, и безопаснее, да использование РД-180/181 снимает многие проблемы американских РН и существенно экономит деньги налогоплательщиков самой богатой страны мира.

Самый лучший ракетный двигатель - это такой двигатель, который вы можете произвести/купить, при этом он будет обладать тягой в требуемом вам диапазоне (не слишком большой или маленькой) и будет эффективным настолько (удельный импульс, давление в камере сгорания), что его цена не станет неподъемной для вас. /Филипп Терехов@lozga

Наиболее освоены водородные двигатели в США.
Сейчас мы позиционируемся на 3-4 месте в "Водородном клубе" (после Европы, Японии и Китая/Индии).

Отдельно упомяну твёрдый и металлический водород.


Твердый водород кристаллизуется в гексагональной решетке (а = = 0,378 нм, с = 0,6167 нм), в узлах которой расположены молекулы Н 2 , связанные между собой слабыми межмолекулярными силами; плотность 86,67 кг/м³; С° 4,618 Дж/(моль*К) при 13 К; диэлектрик. При давлении свыше 10000 МПа предполагается фазовый переход с образованием структуры, построенной из атомов и обладающей металлическими свойствами. Теоретически предсказана возможность сверхпроводимости "металлический водород".

Твёрдый водород-твёрдое агрегатное состояние водорода.
Температура плавления −259,2 °C (14,16 К).
Плотностью 0,08667 г/см³ (при −262 °C).
Белая снегоподобная масса, кристаллы гексагональной сингонии.


Шотландский химик Дж. Дьюар в 1899 году впервые получил водород в твёрдом состоянии. Для этого он использовал регенеративную охлаждающую машину, основанную на эффекте .

Беда с ним. Он постоянно теряется: . Оно и понятно: получен кубик из молекул: 6х6х6. Просто "гигантские" объёмы - прям хоть сейчас "заправляй" ракету. Почему-то мне это напомнило . Это нано-чудо не могут найти уже лет 7 или больше.

Анамезон, антивещество, метастабильный гелий пока оставлю за кадром.


...
Гидразиновые топлива ("вонючки")
Гидразин-N2H4


Состояние при н.у.- бесцветная жидкость
Молярная масса=32.05 г/моль
Плотность=1.01 г/см³


Очень распространенное топливо.
Хранится долго, и его за это "любят". Широко используется в ДУ КА и МБР/БРПЛ, где долгохранимость имеет критическое значение.

Кого смутил Iуд в размерности Н*с/кг отвечаю: это обозначение "любят" военные.
Ньютон - производная единица, исходя из она определяется как сила, изменяющая за 1 секунду скорость тела массой 1 кг на 1 м/с в направлении действия силы. Таким образом, 1 Н = 1 кг·м/с 2 .
Соответственно: 1 Н*с/кг =1 кг·м/с 2 *с/кг=м/с.
Освоен в производстве.

Недостатки: токсичен, вонючий.

Для человека степень токсичности гидразина не определена. По расчётам S. Krop опасной концентрацией следует считать 0,4 мг/л. Ch. Comstock с сотрудниками полагает, что предельно допустимая концентрация не должна превышать 0,006 мг/л. Согласно более поздним американским данным, эта концентрация при 8-часовой экспозиции снижена до 0,0013 мг/л. Важно отметить при этом, что порог обонятельного ощущения гидразина человеком значительно превышает указанные числа и равен 0,014-0,030 мг/л. Существенным в этой связи является и тот факт, что характерный запах ряда гидразинопроизводных ощущается лишь в первые минуты контакта с ними. В дальнейшем вследствие адаптации органов обоняния, это ощущение исчезает, и человек, не замечая того, может длительное время находиться в зараженной атмосфере, содержащей токсические концентрации названного вещества.

Пары гидразина при адиабатном сжатии взрываются. Склонен к разложению, что однако позволяет его использовать как монотопливо для ЖРД малой тяги (ЖРДМТ). В силу освоенности производства более распространен в США.

Несимметричный диметилгидразин (НДМГ)-H 2 N-N(CH 3) 2

Хим. формула:C2H8N2,Рац. формула:(CH3)2NNH2
Состояние при н.у.- жидкое
Молярная масса=60,1 г/моль
Плотность=0,79±0,01 г/см³


Широко используется на военных двигателях в следствие своей долгохранимости. При освоении технологии ампулирования - практически исчезли все проблемы (кроме утилизации и аварий припусках).

Имеет более высокий импульс по сравнению с гидразином.

Плотность и удельный импульс с основными окислителями ниже керосина с теми же окислителями. Самовоспламенятся с азотными окислителями. Освоен в производстве в СССР.
Более распространен в СССР.
А в реактивном двигателе французского истребителя-бомбардировщика (хорошее видео-рекомендую) НДМГ используют как активизирующую добавку к традиционному топливу.

По поводу гидразиновых топлив.

Удельная тяга равна отношению тяги к весовому расходу топлива; в этом случае она измеряется в секундах (с = Н·с/Н = кгс·с/кгс). Для перевода весовой удельной тяги в массовую её надо умножить на ускорение свободного падения (примерно равное 9,81 м/с²)

За кадром остались:
Анилин, метил-, диметил- и триметиламины и CH 3 NHNH 2 -Метилгидразин (он же монометилгидразин или гептил) и пр.

Они не так распространены. Главное достоинство горючих группы гидразина - долгохранимость при использовании высококипящих окислителей. Работать с ними очень неприятно-токсичны горючие, агрессивные окислители, токсичны продукты сгорания.


На профессиональном жаргоне эти топлива называют "вонючими" или "вонючками".

Можно с высокой степенью уверенности сказать, что если на РН стоят "вонючие" двигатели, то "до замужества" она была боевой ракетой (МБР, БРПЛ или ЗУР - что уже редкость) . Химия на службе и армии и гражданки.

Исключение, пожалуй, лишь РН Ariane - творение кооператива: Aérospatiale, Matra Marconi Space, Alenia, Spazio, DASA и др. Её миновала в "девичестве" подобная боевая участь.

Военные практически все перешли на РДТТ, как более удобные в эксплуатации. Ниша для "вонючих" топлив в космонавтике сузилась до использования в ДУ КА, где требуется долгое хранение без особых материальных или энергетических затрат.
Пожалуй, кратко обзор можно выразить графически:

Активно работают ракетчики и с метаном. Особых эксплуатационных трудностей нет: позволяет неплохо поднять давление в камере (до 40 М Па) и получить хорошие характеристики.
() и остальными природными газами (СПГ).

О прочих направления по повышению характеристик ЖРД (металлизация горючих, использование Не 2 , ацетама и прочем) я напишу позже. Если будет интерес.

Использование эффекта свободных радикалов-хорошая перспектива.
Детонационное горение-возможность для долгожданного прыжка на Марс.

Послесловие:

вообще все ракетные ТК (кроме НТК), а так же попытка изготовить их в домашних условиях- очень опасны. Предлагаю внимательно ознакомиться:
. Смесь, которую он готовил на плите в кастрюле, ожидаемо взорвалась. В итоге мужик получил огромное количество ожогов и провел в больнице пять дней.

Все домашние (гаражные) манипуляции с такими химическими компонентами чрезвычайно опасны, а порой и противозаконны. К местам их разлива без ОЗК и противогаза ЛУЧШЕ не подходить:

Как и с разлитой ртутью: звонить в МЧС, быстро приедут и всё профессионально подберут.

Всем спасибо, кто смог вытерпеть всё это до конца.

Первоисточники:
Качур П. И., Глушко А. В. "Валентин Глушко. Конструктор ракетных двигателей и космических систем", 2008.
Г.Г. Гахун "Конструкция и проектирование жидкостных ракетных двигателей", Москва, "Машиностроение, 1989.
Возможность увеличения удельного импульса жидкостного ракетного двигателя
при добавлении в камеру сгорания гелия С.А. Орлин МГТУ им. Н.Э. Баумана, Москва
М.С.Шехтер. "Топлива и рабочие тела ракетных двигателей", Машиностроение" 1976
Завистовский Д. И."Беседы о ракетных двигателях".
Филипп Терехов @lozga (www.geektimes.ru).
"Виды топлива и их характеристика.Топливо горючие вещества, используемые для получения тепла. Состав топлива Горючая часть - углерод С-водород Н-сера."-презентация Оксана Касеева
Факас С.С."Основы ЖРД. Рабочие тела"
Использованы фото и видеоматериалы с сайтов:

http://technomag.bmstu.ru
www.abm-website-assets.s3.amazonaws.com
www.free-inform.ru
www.rusarchives.ru
www.epizodsspace.airbase.ru
www.polkovnik2000.narod.ru
www.avia-simply.ru
www.arms-expo.ru
www.npoenergomash.ru
www.buran.ru
www.fsmedia.imgix.net
www.wikimedia.org
www.youtu.be
www.cdn.tvc.ru
www.commi.narod.ru
www.dezinfo.net
www.nasa.gov
www.novosti-n.org
www.prirodasibiri.ru
www.radikal.ru
www.spacenews.com
www.esa.int
www.bse.sci-lib.com
www.kosmos-x.net.ru
www.rocketpolk44.narod.ru
www.criotehnika.ru
www.трансавтоцистерна.рф
www.chistoprudov.livejournal.com/104041.html
www.cryogenmash.ru
www.eldeprocess.ru
www.chemistry-chemists.com
www.rusvesna.su
www.arms-expo.ru
www.armedman.ru
www.трансавтоцистерна.рф
www.ec.europa.eu
www.mil.ru
www.kbkha.ru
www.naukarus.com

Ракетное топливо - компонент веществ питания ракетного двигателя для создания им тяги и движения ракеты в заданном направлении. С развитием ракетной техники идет развитие новых видов ракетных двигателей, например ядерный ракетный двигатель, или ионный и т. д. Ракетное топливо может быть химическим (жидким и твёрдым), ядерным, термоядерным.

Жидкое ракетное топливо делится на окислитель и горючее. Эти компоненты находятся в ракете в жидком состоянии в разных баках. Смешивание происходит в камере сгорания, обычно с помощью форсунок. Давление создается за счет работы турбонасосной или вытеснительной системы. Также компоненты топлива используются для охлаждения сопла ракетного двигателя.

Также применяются так называемые ракетные монотоплива, в которых и окислителем и восстановителем является одно и то же вещество. При работе ракетного двигателя на монотопливе происходит химическая реакция самоокисления-самовосстановления, либо двигатель работает только за счёт фазового перехода вещества монотоплива, например из жидкого состояния в газообразное.

Твёрдое ракетное топливо тоже состоит из окислителя и горючего, но они находятся в смеси твёрдых веществ.

Группы

Ракетное топливо в достаточно условной мере может быть разделено на различные группы; в качестве основных групп обычно рассматриваются следующие:

  • Электрореактивные: электроэнергия и рабочие тела.
  • Ядерные: ядерное деление, синтез, распад изотопов.
  • Химические: химические реакции, реакции рекомбинации свободных радикалов.
  • Физические: потенциальная энергия сжатых газов.

Типы

Химические ракетные топлива
  • Твёрдые .
    • Нитроглицерин , динитрогликоль и другие труднолетучие растворители
    • Карбиды , нитриды , азиды и амиды металлов
  • Жидкие :
    • Несимметричный диметилгидразин (НДМГ , гептил )
Окислители для жидких видов топлива
  • Пероксиды , надпероксиды и неорганические озониды
  • органические нитросоединения и эфиры азотной кислоты (алкилнитраты)
  • Тетраоксид диазота (АТ , Амил )
  • Гелеобразное.
  • Гибридное.
Свободные радикалы
  • Рабочие тела для электрореактивных двигателей.
Ядерные топлива

Топливо космических ракет и аппаратов

Вывод космических аппаратов за пределы земной атмосферы и разгон до орбитальных скоростей требует огромных энергозатрат. Используемые в настоящее время топлива и конструкционные материалы ракет обеспечивают соотношение масс на старте и на орбите не лучше 30:1. Поэтому масса космической ракеты на старте составляет сотни и даже тысячи тонн. Отрыв такой массы от стартового стола требует превосходящей реактивной тяги двигателей . Поэтому основное требование к топливу первой ступени ракет - возможность создания значительной тяги при приемлемых габаритах двигателя и запасах топлива. Тяга прямо пропорциональна удельному импульсу и массовому расходу топлива. Т.е. топлива с высоким удельным импульсом требуется меньше для вывода на орбиту равной нагрузки. Удельный импульс обратно пропорционален молекулярному весу продуктов горения, что означает низкую плотность высокоэффективного топлива и, соответственно, значительный объем и вес конструкции двигателя и топливной системы. Поэтому при выборе топлив ищут компромисс между весом конструкции и весом топлива. На одном конце этого выбора находится топливная пара водород +кислород с наивысшим удельным импульсом и низкой плотностью. На другом конце находится твердое топливо на основе перхлората аммония с низким удельным импульсом, но высокой плотностью.

Помимо тяговых возможностей топлива, учитываются и другие факторы. Неустойчивость горения некоторых топлив зачастую приводила к взрывам двигателей. Высокая температура горения некоторых топлив предъявляла повышенные требования к конструированию, материалам и технологии двигателей. Криогенные топлива утяжеляли ракету теплоизоляцией, затрудняли выбор хладостойких материалов, усложняли проектирование и отработку. Поэтому на заре космической эры получило широкое распространение такое легкое в получении, хранении и использовании топливо как несимметричный диметилгидразин (НДМГ). При этом оно имело вполне приемлемые тяговые характеристики, поэтому довольно широко используется и в наше время.

Помимо технических факторов важны экономические, исторические и социальные. Криогенные топлива требуют дорогой сложной специфической инфраструктуры космодрома для получения и хранения криогенных материалов, таких как жидкие кислород и водород. Высокотоксичные топлива, такие как НДМГ, создают экологические риски для персонала и мест падения ступеней ракет, экономические риски последствий заражения территорий при аварийных ситуациях.

В ракетах для запуска космических аппаратов в настоящее время, в основном, используются четыре вида топлива:

  • Керосин + жидкий кислород . Популярное, дешевое топливо с великолепно развитой и отработанной линейкой двигателей и топливной инфраструктурой. Имеет неплохую экологичность. Лучшие двигатели обеспечивают удельный импульс (УИ) немногим выше 300 секунд при атмосферном давлении.
  • Несимметричный диметилгидразин + тетраоксид азота . Чрезвычайно токсичное топливо. Однако высокая устойчивость горения, относительная простота топливной арматуры, легкость хранения, хорошая плотность топлива, хорошие энергетические характеристики предопределили широкое распространение. Сегодня предпринимаются усилия по отказу от НДМГ. УИ примерно аналогичен кислород-керосиновой паре.
  • Жидкий водород + жидкий кислород. Низкая плотность и чрезвычайно низкие температуры хранения водорода делает очень сложным использование топливной пары в первой ступени ракет-носителей. Однако высокая эффективность приводит к широкому использованию в верхних ступенях ракет-носителей, где приоритет тяги уменьшается, а цена массы растет. Топливо имеет великолепную экологичность. УИ лучших двигателей на уровне моря свыше 350 секунд, в вакууме - 450 секунд.
  • Смесевое твёрдое ракетное топливо на основе перхлората аммония . Дешевое топливо, но требует высокой культуры производства. Широко используется в западном ракетостроении на первой ступени ракет благодаря легкости получения значительной тяги. Двигателями на твердом топливе сложно управлять по вектору тяги, поэтому их часто ставят в параллель с небольшими жидкостными двигателями, которые обеспечивают управляемость полета. Имеет низкую экологичность. Типовой УИ - 250 секунд.

Наблюдается также высокий интерес к перспективной топливной паре метан + жидкий кислород.

Напишите отзыв о статье "Ракетное топливо"

Примечания

Ссылки

Отрывок, характеризующий Ракетное топливо

– Они! Батюшки родимые!.. Ей богу, они. Четверо, конные!.. – кричала она.
Герасим и дворник выпустили из рук Макар Алексеича, и в затихшем коридоре ясно послышался стук нескольких рук во входную дверь.

Пьер, решивший сам с собою, что ему до исполнения своего намерения не надо было открывать ни своего звания, ни знания французского языка, стоял в полураскрытых дверях коридора, намереваясь тотчас же скрыться, как скоро войдут французы. Но французы вошли, и Пьер все не отходил от двери: непреодолимое любопытство удерживало его.
Их было двое. Один – офицер, высокий, бравый и красивый мужчина, другой – очевидно, солдат или денщик, приземистый, худой загорелый человек с ввалившимися щеками и тупым выражением лица. Офицер, опираясь на палку и прихрамывая, шел впереди. Сделав несколько шагов, офицер, как бы решив сам с собою, что квартира эта хороша, остановился, обернулся назад к стоявшим в дверях солдатам и громким начальническим голосом крикнул им, чтобы они вводили лошадей. Окончив это дело, офицер молодецким жестом, высоко подняв локоть руки, расправил усы и дотронулся рукой до шляпы.
– Bonjour la compagnie! [Почтение всей компании!] – весело проговорил он, улыбаясь и оглядываясь вокруг себя. Никто ничего не отвечал.
– Vous etes le bourgeois? [Вы хозяин?] – обратился офицер к Герасиму.
Герасим испуганно вопросительно смотрел на офицера.
– Quartire, quartire, logement, – сказал офицер, сверху вниз, с снисходительной и добродушной улыбкой глядя на маленького человека. – Les Francais sont de bons enfants. Que diable! Voyons! Ne nous fachons pas, mon vieux, [Квартир, квартир… Французы добрые ребята. Черт возьми, не будем ссориться, дедушка.] – прибавил он, трепля по плечу испуганного и молчаливого Герасима.
– A ca! Dites donc, on ne parle donc pas francais dans cette boutique? [Что ж, неужели и тут никто не говорит по французски?] – прибавил он, оглядываясь кругом и встречаясь глазами с Пьером. Пьер отстранился от двери.
Офицер опять обратился к Герасиму. Он требовал, чтобы Герасим показал ему комнаты в доме.
– Барин нету – не понимай… моя ваш… – говорил Герасим, стараясь делать свои слова понятнее тем, что он их говорил навыворот.
Французский офицер, улыбаясь, развел руками перед носом Герасима, давая чувствовать, что и он не понимает его, и, прихрамывая, пошел к двери, у которой стоял Пьер. Пьер хотел отойти, чтобы скрыться от него, но в это самое время он увидал из отворившейся двери кухни высунувшегося Макара Алексеича с пистолетом в руках. С хитростью безумного Макар Алексеич оглядел француза и, приподняв пистолет, прицелился.
– На абордаж!!! – закричал пьяный, нажимая спуск пистолета. Французский офицер обернулся на крик, и в то же мгновенье Пьер бросился на пьяного. В то время как Пьер схватил и приподнял пистолет, Макар Алексеич попал, наконец, пальцем на спуск, и раздался оглушивший и обдавший всех пороховым дымом выстрел. Француз побледнел и бросился назад к двери.
Забывший свое намерение не открывать своего знания французского языка, Пьер, вырвав пистолет и бросив его, подбежал к офицеру и по французски заговорил с ним.
– Vous n"etes pas blesse? [Вы не ранены?] – сказал он.
– Je crois que non, – отвечал офицер, ощупывая себя, – mais je l"ai manque belle cette fois ci, – прибавил он, указывая на отбившуюся штукатурку в стене. – Quel est cet homme? [Кажется, нет… но на этот раз близко было. Кто этот человек?] – строго взглянув на Пьера, сказал офицер.
– Ah, je suis vraiment au desespoir de ce qui vient d"arriver, [Ах, я, право, в отчаянии от того, что случилось,] – быстро говорил Пьер, совершенно забыв свою роль. – C"est un fou, un malheureux qui ne savait pas ce qu"il faisait. [Это несчастный сумасшедший, который не знал, что делал.]
Офицер подошел к Макару Алексеичу и схватил его за ворот.
Макар Алексеич, распустив губы, как бы засыпая, качался, прислонившись к стене.
– Brigand, tu me la payeras, – сказал француз, отнимая руку.
– Nous autres nous sommes clements apres la victoire: mais nous ne pardonnons pas aux traitres, [Разбойник, ты мне поплатишься за это. Наш брат милосерд после победы, но мы не прощаем изменникам,] – прибавил он с мрачной торжественностью в лице и с красивым энергическим жестом.
Пьер продолжал по французски уговаривать офицера не взыскивать с этого пьяного, безумного человека. Француз молча слушал, не изменяя мрачного вида, и вдруг с улыбкой обратился к Пьеру. Он несколько секунд молча посмотрел на него. Красивое лицо его приняло трагически нежное выражение, и он протянул руку.
– Vous m"avez sauve la vie! Vous etes Francais, [Вы спасли мне жизнь. Вы француз,] – сказал он. Для француза вывод этот был несомненен. Совершить великое дело мог только француз, а спасение жизни его, m r Ramball"я capitaine du 13 me leger [мосье Рамбаля, капитана 13 го легкого полка] – было, без сомнения, самым великим делом.
Но как ни несомненен был этот вывод и основанное на нем убеждение офицера, Пьер счел нужным разочаровать его.
– Je suis Russe, [Я русский,] – быстро сказал Пьер.
– Ти ти ти, a d"autres, [рассказывайте это другим,] – сказал француз, махая пальцем себе перед носом и улыбаясь. – Tout a l"heure vous allez me conter tout ca, – сказал он. – Charme de rencontrer un compatriote. Eh bien! qu"allons nous faire de cet homme? [Сейчас вы мне все это расскажете. Очень приятно встретить соотечественника. Ну! что же нам делать с этим человеком?] – прибавил он, обращаясь к Пьеру, уже как к своему брату. Ежели бы даже Пьер не был француз, получив раз это высшее в свете наименование, не мог же он отречься от него, говорило выражение лица и тон французского офицера. На последний вопрос Пьер еще раз объяснил, кто был Макар Алексеич, объяснил, что пред самым их приходом этот пьяный, безумный человек утащил заряженный пистолет, который не успели отнять у него, и просил оставить его поступок без наказания.
Француз выставил грудь и сделал царский жест рукой.
– Vous m"avez sauve la vie. Vous etes Francais. Vous me demandez sa grace? Je vous l"accorde. Qu"on emmene cet homme, [Вы спасли мне жизнь. Вы француз. Вы хотите, чтоб я простил его? Я прощаю его. Увести этого человека,] – быстро и энергично проговорил французский офицер, взяв под руку произведенного им за спасение его жизни во французы Пьера, и пошел с ним в дом.
Солдаты, бывшие на дворе, услыхав выстрел, вошли в сени, спрашивая, что случилось, и изъявляя готовность наказать виновных; но офицер строго остановил их.
– On vous demandera quand on aura besoin de vous, [Когда будет нужно, вас позовут,] – сказал он. Солдаты вышли. Денщик, успевший между тем побывать в кухне, подошел к офицеру.
– Capitaine, ils ont de la soupe et du gigot de mouton dans la cuisine, – сказал он. – Faut il vous l"apporter? [Капитан у них в кухне есть суп и жареная баранина. Прикажете принести?]
– Oui, et le vin, [Да, и вино,] – сказал капитан.

Французский офицер вместе с Пьером вошли в дом. Пьер счел своим долгом опять уверить капитана, что он был не француз, и хотел уйти, но французский офицер и слышать не хотел об этом. Он был до такой степени учтив, любезен, добродушен и истинно благодарен за спасение своей жизни, что Пьер не имел духа отказать ему и присел вместе с ним в зале, в первой комнате, в которую они вошли. На утверждение Пьера, что он не француз, капитан, очевидно не понимая, как можно было отказываться от такого лестного звания, пожал плечами и сказал, что ежели он непременно хочет слыть за русского, то пускай это так будет, но что он, несмотря на то, все так же навеки связан с ним чувством благодарности за спасение жизни.
Ежели бы этот человек был одарен хоть сколько нибудь способностью понимать чувства других и догадывался бы об ощущениях Пьера, Пьер, вероятно, ушел бы от него; но оживленная непроницаемость этого человека ко всему тому, что не было он сам, победила Пьера.


Вещества, применяемые в ракетных двигателях как источник энергии и рабочего тела для создания реактивной силы тяги. Основным показателем Р.т., характеризующим его энергетич. свойства, является теплота сгорания или теплопроизводительность - количество тепла в ккал, выделяющегося при сгораниии 1 кг топлива. Экономичность работы ракетного двигателя на различном топливе оценивается уд. тягой, или уд. импульсом Rуд. 0,1 Uэ кГ.сек/кг, где Uэ - эффективная скорость истечения газообразных продуктов сгорания топлива через сопло двигателя. Rуд. показывает, какую тягу может развивать ракетный двигатель при сгорании в нем 1 кг топлива в 1 сек. Чем больше удельная тяга, тем двигатель меньше расходует топлива, тем лучше топливо. По агрегатному состоянию Р.т. делят на твердые (пороха) и жидкие. Соответственно и ракетные двигатели подразделяют на пороховые и жидкостные.
В ракетных двигателях твердые топлива применялись значительно раньше жидких. Первым твердым топливом, издавна применявшимся в простейших ракетах (фейерверочных, сигнальных, зажигательных и др.), был черный прессованный порох. В современных пороховых ракетных двигателях применяют гл. обр. пороха на основе нитроцеллюлозы (см. Баллиститы) и смесевые, или гетерогенные, пороха.
Смесевые твердые топлива представляют собой механич. смесь горючего вещества с окислителем. В качестве горючего обычно применяют смолы, напр. эпоксидные, полиуретановые или полиэфирные, асфальты, синтетич. каучуки, играющие одновременно роль цементатора (связки). В качестве окислителей применяют соединения, содержащие в своем составе большое количество кислорода (перхлорат аммония NH4ClO4, перхлорат калия KClO4 и др.). Окислитель смешивают с горючим и добавками (стабилизаторами, катализаторами, порошкообразными металлами с высокой теплотой сгорания и др.) и из смеси готовят шашки или блоки необходимой величины. Напр., топливо американской ракеты "Поларис" состоит из полиуретановой смолы и перхлората аммония с добавкой до 10% алюминиевого порошка. Смесевые пороха как Р.т. лучше баллиститных: из них легче готовить заряды больших размеров, у них больше теплота сгорания и уд. тяга двигателя, скорость горения меньше зависит от темп-ры и давления в камере двигателя. Уд. тяга ракетных двигателей, работающих на твердых топливах, составляет 180-240 кГ.сек/кг.
К преимуществам пороха как твердого Р.т. относятся: большая плотность (1,50-1,65г/см3), простота снаряжения двигателя пороховым зарядом (камера сгорания является местом хранения порохового заряда), возможность длительного хранения ракеты в снаряженном состоянии в постоянной готовности к применению. Существенный недостаток твердых Р.т. - малая теплота сгорания (800-1300 ккал/кг), неустойчиврсть горения при малых давлениях в камере. Управлять процессом сгорания топлива и регулировать тягу таких двигателей трудно.
В 1903 К.Э. Циолковский предложил применять в ракетных двигателях жидкие топлива, имеющие значительно большую теплоту сгорания. Это позволило увеличить силу тяги, скорость, высоту и дальность полета летательных аппаратов.
К преимуществам жидких топлив перед твердыми относятся также возможность регулирования процесса сгорания, давления в камере и тяги двигателя посредством изменения расхода топлива, возможность многократных запусков и остановок двигателя.
Известно большое число жидких веществ, пригодных для сжигания в камере ракетного двигателя, однако только сравнительно немногие из них получили практич. применение. Это объясняется высокими требованиями, предъявляемыми к топливам. Важнейшими из этих требований являются: большая теплота сгорания, возможно большая плотность, низкая темп-ра замерзания, небольшая вязкость, малая агрессивность по отношению к конструкционным материалам, стабильность при хранении и транспортировке и безопасность в обращении. Кроме того, скорость горения топлива должна быть достаточно большая, а сам процесс горения устойчивым (без пульсации или детонации). Период задержки воспламенения (промежуток времени от момента поджигания топлива до его воспламенения) должен быть небольшим. Темп-ра восламенения топлива должна быть возможно более низкой. Так как в современных ракетных двигателях топливо одновременно используется для охлаждения стенок камеры сгорания, то теплоемкость, теплопроводность, скрытая теплота испарения и темп-ра кипения топлива должны быть достаточно большими; кроме того, оно должно быть термически стойким (не образовывать твердых отложений на горячих стенках камеры. Практически выбирают топлива, способные для заданных условий работы дать наилучшие результаты.
Жидкие ракетные топлива делят на однокомпонентные и двукомпонентные (под компонентами топлива подразумевают каждое из веществ, раздельно подводимых в камеру сгорания).
К однокомпонентным относятся топлива, к-рые при сгорании не нуждаются в подаче окислителя извне. В этот класс топлив входят (см. табл. 1): вещества, молекулы к-рых содержат горючие элементы и необходимый для горения кислород (напр., метилнитрат, этилнитрат, изопропилнитрат, нитрометан, нитроэтан и др.); р-ры горючих и окислителей, не взаимодействующих друг с другом при обычных темп-рах (смеси перекиси водорода, этилового спирта и воды; четырехокиси азота и бензола); соединения, выделяющие при своем распаде большое количество тепла и газообразных продуктов без участия окислителя (перекись водорода, гидразин, окись этилена).

Таблица 1. Физико-химические свойства нек-рых ракетных топлив и их компонентов

Наименование Плотность при 20C,г/см3 Т. кип.,C Т.пл., C
Окислители
Кислород 1,14 а -183 -219
Азотная кислота 1,52 б 86 -41,6
Четырехокись азота 1,46 б 21 -11,3
Перекись водорода 1,44 150 -2
Фтор 1,51 а -188 -220
Озон 1,46 а -112 -193 в
Тетранитрометан 1,64 125 13,9
Хлорная кислота 1,77 110 -112
Горючие
Керосин 0,78-0,85 180-320 -50
Этиловый спирт 0,79 78 -115
Метиловый спирт 0,79 65 -98
Анилин 1,02 184 -6
Ксилидин 0,98 216 -54
Триэтиламин 0,73 90 -115
Диметилгидразин 0,80 63 -58
Аммиак 0,68 а -33 -78
Водород 0,07 а -253 -259
Однокомпонентные топлива
Метилнитрат 1,21 64 -83
Изопропилнитрат 1,02 102 -60
Нитрометан 1,14 101 -29
Окись этилена 0,88 13 -111

а- При темп-ре кипения. б -При 15C. в - Способен к переохлаждению (см. Озон).
Применение однокомпонентных топлив упрощает конструкцию топливный системы и уменьшает вес двигателя, однако взрыоопасность и сравнительно низкая теплота сгорания (470-1100 ккал/кг) этих топлив ограничивает их применение. Наибольшее распространение как однокомпонентное топливо получила перекись водорода. При разложении 1 кг 100%-ной H2O2 выделяется 690 ккал тепла, а продукты распада (вода и кислород) нагреваются до 470C. Для ускорения разложения перекиси водорода применяют катализаторы NaMnO4, MnO2 и др.
Двухкомпонентные топлива состоят из горючего и окислителя, раздельно подаваемых в камеру сгорания. Они получили широкое применение, т.к. теплота их сгорания значительно выше, чем у однокомпонентных топлив (2000-2500 ккал/кг). Такие топлива более безопасны, их легче хранить и транспортировать, сырьевые ресурсы их значительно больше, чем однокомпонентных топлив. По способу воспламенения в двигателе двухкомпонентные топлива делятся на самовоспламеняющиеся и несамовоспламеняющиеся.
Применение самовоспламеняющихся топлив упрощает конструкцию двигателя и повышает надежность его запуска, однако эти топлива опасны в пожарном отношении.
В качестве окислителей наиболее широкое распостранение за рубежом получили жидкий кислород, четырехокись азота, конц. азотная к-та и перекись водорода. Из них наиболее эффективным является жидкий кислород; его недостаток - низкая темп-ра кипения (-183C), в связи с чем велики потери его от испарения. Широко применяются как окислители четырехокись азота и конц. азотная к-та в связи с тем, что эти вещества при обычных темп-рах являются жидкостями и дают с нек-рыми горючими (анилин, гидразин, диметилгидразин и др.) самовоспламеняющиеся смеси. Азотная к-та, четырехокись азота и их смеси весьма агрессивны. Для уменьшения коррозионной активности к ним добавляют различные ингибиторы коррозии, например 0,4-0,6% фтористого водорода. Перекись водорода как окислитель используется реже, т.к. она по эффективности несколько уступает азотной к-те. Кроме того, она чувствительна к различным примесям, особенно к окислам и солям железа, свинца и др. тяжелых металлов. Как окислители могут использоваться также жидкий фтор, жидкий озон, тетранитрометан, хлорная к-та и др.
Самым сильным окислителем является жидкий фтор. В паре с жидким водородом, гидразином или аммиаком, как горючими он дает топлива с наиболее высокими энергетич. показателями (см. табл. 2). Преимущество жидкого фтора перед другими окислителями состоит в сравнительно большой плотности, высокой теплопроизводительности, благоприятном химич. составе продуктов горения. Серьезными препятствиями к практич. освоению жидкого фтора ракетной техникой пока являются сильная агрессивность, ядовитость, низкая темп-ра кипения.
В качестве ракетного горючего применяют: углеводороды и их смеси (керосин, бензин); спирты (метиловый, этиловый, фурфуриловый и др.); амины (анилин, триэтиламин, ксилидин и др.); гидразин и его производные (метилгидразин, диметилгидразин), жидкий водород и др.
Углеводородное горючее относительно дешево, отличается высокой теплотой сгорания и темп-рой горения, но имеет большой период задержки воспламенения и сравнительно низкую охлаждающую способность; применяется с жидким кислородом или азотной к-той. Спирты обладают меньшей теплотой сгорания, чем углеводороды, но имеют более низкую темп-ру горения, лучшую охлаждающую способность и меньший период задержки воспламенения. Хорошими эксплуатационными качествами как горючие отличаютсч амины и диметилгидразин. У них сравнительно высокие теплота сгорания, плотность и темп-ра кипения, низкие темп-ры воспламенения и замерзания.

Таблица 2. Расчетные характеристики некоторых жидких ракетных топлив

Окислитель Горючее Весовое отношениеокислителя к горючему Плотность топлива,г/см3 Темп-ра продуктов сгорания,C Средний мол. вес продуктов сгорания Уд. тяга двигателя, кГ.сек/кг (при давлениях в камере сгорания 70 кг/см2, при срезе сопла 1 кг/см2
Жидкий Кислород аммиак 1,4 0,84 2790 19,7 285
спирт этиловый 1,68 0,99 3115 23,9 274
Гидразин 0,80 1,06 3075 18,6 301
Диметилгидразин 1,39 0,96 3170 19,8 295
Водород 3,4 0,26 2415 18,0 368
Керосин 2,48 1,02 3385 23,0 286
Фтор Аммиак 3,85 1,21 4280 19,9 330
Гидразин 1,83 1,29 4220 18,5 334
Водород 5,54 0,33 2535 20,0 398
85% Азотной кислоты+15% Четырех-Окиси Азота Гидразин 1,45 1,28 2805 20,7 277
Диметилгидразин 2,46 1,22 2845 22,2 267
Керосин 4,1 1,33 2900 24,6 258
Четырех-Окиси Азота Гидразин 1,42 1,23 2990 21,3 292
Диметилгидразин 2,75 1,19 3150 24,0 274
Керосин 3,62 1,24 3105 25,2 263

В сочетании с четырехокисью азота и азотной к-той амины и диметилгидразин образуют самовоспламеняющееся устойчиво горящее топливо с малым периодом задержки самовоспламенения. Высокие энергетич. показатели имеет жидкий водород. В смеси с кислородом он легко воспламеняется от постороннего источника, имеет очень высокую теплоту сгорания при сравнительно низкой темп-ре горения. Применение жидкого водорода позволяет значительно повысить уд. тягу двигателя (см. табл. 2). Практическое применение жидкого водорода затрудняют малая плотность и чрезвычайно низкая температура кипения. Большая часть используемых жидких ракетных топлив весьма агрессивна и ядовита. Работа с ними требует соблюдения мер предосторожности.
Стремление повысить скорость и дальность полета летательных аппаратов ведет к поискам новых источников энергии для использования в ракетных двигателях. Интенсивно изучаются свободные радикалы. При рекомбинации радикалов выделяется большое количество тепла. Если тепловой эффект обычных реакций окисления не превышает 3000 ккал/кг, то запас энергии радикалов достигает 55000 ккал/кг (при рекомбинации атомов водорода). Большие перспективы открывают возможность использования в ракетных двигателях энергии внутриядерных реакций, плазменного, ионного и фотонного топлива.
Лит.:
Паушкин Я.М., Химия реактивных топлив, М., 1962; Моторные, реактивные и ракетные топлива, под ред. К.К.Папок и Е.Г.Семенило, 4 изд., М., 1962; Синярев Г.Б., Добровольский М.В., Жидкостные ракетные двигатели, М., 1957. П.П.Зарудный.
Загрузка...