Автомобильный портал - ZadonskVokzal

Основные способы защиты металлов от коррозии. Защита от коррозии

Для защиты металлов от коррозии применяются различные способы, которые условно можно разделить на следующие основные направления: легирование металлов; защитные покрытия (металлические, неметаллические); электрохимическая защита; изменение свойств коррозионной среды; рациональное конструирование изделий.

Легирование металлов. Это эффективный метод повышения коррозионной стойкости металлов. При легировании в состав сплава или металла вводят легирующие элементы (хром, никель, молибден и др.), вызывающие пассивность металла. Пассивацией называют процесс перехода металла или сплава в состояние его повышенной коррозионной устойчивости, вызванное торможением анодного процесса. Пассивное состояние металла объясняется образованием на его поверхности совершенной по структуре оксидной пленки (оксидная пленка обладает защитными свойствами при условии максимального сходства кристаллических решеток металла и образующегося оксида).

Широкое применение нашло легирование для защиты от газовой коррозии. Легированию подвергаются железо, алюминий, медь, магний, цинк, а также сплавы на их основе. В результате чего получаются сплавы с более высокой коррозионной стойкостью, чем сами металлы. Эти сплавы обладают одновременно жаростойкостью и жаропрочностью .

Жаростойкость – стойкость по отношению к газовой коррозии при высоких температурах. Жаропрочность – свойства конструкционного материала сохранять высокую механическую прочность при значительном повышении температуры. Жаростойкость обычно обеспечивается легированием металлов и сплавов, например, стали хромом, алюминием и кремнием. Эти элементы при высоких температурах окисляются энергичнее, чем железо, и образуют при этом плотные защитные пленки оксидов, например Al 2 O 3 и Cr 2 O 3 .

Легирование также используется с целью снижения скорости электрохимической коррозии, особенно коррозии с выделением водорода. К коррозионностойким сплавам, например, относятся нержавеющие стали, в которых легирующими компонентами служат хром, никель и другие металлы.

Защитные покрытия. Слои, искусственно создаваемые на поверхности металлических изделий для защиты их коррозии, называются защитными покрытиями. Нанесение защитных покрытий – самый распространенный метод борьбы с коррозией. Защитные покрытия не только предохраняют изделия от коррозии, но и придают поверхностям ряд ценных физико-химических свойств (износостойкость, электрическую проводимость и др.). Они подразделяются на металлические и неметаллические. Общими требованиями для всех видов защитных покрытий являются высокая адгезионная способность, сплошность и стойкость в агрессивной среде.

Металлические покрытия. Металлические покрытия занимают особое положение, так как их действие имеет двойственный характер. До тех пор, пока целостность слоя покрытия не нарушена, его защитное действие сводится к изоляции поверхности защищаемого металла от окружающей среды. Это не отличается от действия любого механического защитного слоя (окраска, оксидная пленка и т.д.). Металлические покрытия должны быть непроницаемы для коррозионных агентов.

При повреждении покрытия (или наличии пор) образуется гальванический элемент. Характер коррозионного разрушения основного металла определяется электрохимическими характеристиками обоих металлов. Защитные антикоррозионные покрытия могут быть катодными и анодными . К катодным покрытиям относятся покрытия, потенциалы которых в данной среде имеют более положительное значение, чем потенциал основного металла. Анодные покрытия имеют наиболее отрицательный потенциал, чем потенциал основного металла.

Так, например, по отношению к железу никелевое покрытие является катодным, а цинковое – анодным (рис. 2.).

При повреждении никелевого покрытия (рис. 2,а) на анодных участках происходит процесс окисления железа вследствие возникновения микрокоррозионных гальванических элементов. На катодных участках - восстановление водорода. Следовательно, катодные покрытия могут защищать металл от коррозии лишь при отсутствии пор и повреждения покрытия.

Местное повреждение защитного цинкового слоя ведет к дальнейшему его разрушению, при этом поверхность железа защищена от коррозии. На анодных участках происходит процесс окисления цинка. На катодных участках - восстановление водорода (рис. 2,б).

Электродные потенциалы металлов зависят от состава растворов, поэтому при изменении состава раствора может меняться и характер покрытия.

Для получения металлических защитных покрытий применяются различные способы: электрохимический (гальванические покрытия);погружение в расплавленный металл (горячее цинкование, лужение);металлизация (нанесение расплавленного металла на защищаемую поверхность с помощью струи сжатого воздуха);химический (получение металлических покрытий с помощью восстановителей, например гидразина).

Рис. 2. Коррозия железа в кислотном растворе с катодным (а) и анодным (б) покрытиями: 1 – основной металл; 2 – покрытие; 3 – раствор электролита.

Материалами для металлических защитных покрытий могут быть как чистые металлы (цинк, кадмий, алюминий, никель, медь, хром, серебро и др.), так и их сплавы (бронза, латунь и др.).

Неметаллические защитные покрытия. Они могут быть как неорганическими, так и органическими. Защитное действие этих покрытий сводится в основном к изоляции металла от окружающей среды.

В качестве неорганических покрытий применяют неорганические эмали, оксиды металлов, соединение хрома, фосфора и др. К органическим относятся лакокрасочные покрытия, покрытия смолами, пластмассами, полимерными пленками, резиной.

Неорганические эмали по своему составу являются силикатами, т.е. соединениями кремния. К основным недостаткам таких покрытий относятся хрупкость и растрескивание при тепловых и механических ударах.

Лакокрасочные покрытия наиболее распространены. Лакокрасочное покрытие должно быть сплошным, газо -и водонепроницаемым, химически стойким, эластичным, обладать высоким сцеплением с материалом, механической прочностью и твердостью.

Химические способы очень разнообразны. К ним относится, например, обработка поверхности металла веществами, вступающими с ним в химическую реакцию и образующими на его поверхности пленку устойчивого химического соединения, в формировании которой принимает участие сам защищаемый металл. К числу таких способов относится оксидирование , фосфатирование, сульфи-дирование и др.

Оксидирование - процесс образования оксидных пленок на поверхности металлических изделий.

Современный метод оксидирования – химическая и электрохимическая обработка деталей в щелочных растворах.

Для железа и его сплавов наиболее часто используется щелочное оксидирование в растворе, содержащем NaOH, NaNO 3 , NaNO 2 при температуре 135-140 О С. Оксидирование черных металлов называется воронением.

Fe
Fe 2+ + 2

На катодных участках происходит процесс восстановления:

2 Н 2 О + О 2 + 4
4ОН -

На поверхности металла в результате работы микрогальванических элементов образуется Fe(OH) 2 , который затем окисляется в Fe 3 O 4 . Оксидная пленка на малоуглеродистой стали имеет глубокий черный цвет, а на высокоуглеродистой стали – черный с сероватым оттенком.

Fe 2+ + 2OH -
Fe(OH) 2 ;

12 Fe(OH) 2 + NaNO 3
4Fe 3 O 4 + NaOH + 10 H 2 O + NH 3

Противокоррозионные свойства поверхностной пленки оксидов невысоки, поэтому область применения этого метода ограничена. Основное назначение – декоративная отделка. Воронение используется в том случае, когда необходимо сохранить исходные размеры, так как оксидная пленка составляет всего 1,0 – 1,5 микрона.

Фосфатирование - метод получения фосфатных пленок на изделиях из цветных и черных металлов. Для фосфатирования металлическое изделие погружают в растворы фосфорной кислоты и ее кислых солей (H 3 PO 4 + Mn(H 2 PO 4) 2) при температуре 96-98 о С.

На поверхности металла в результате работы микрогальванических элементов образуется фосфатная пленка, которая имеют сложный химический состав и содержит малорастворимые гидраты двух- и трех замещенных фосфатов марганца и железа: MnHPO 4 , Mn 3 (PO 4) 2 , FeHPO 4 ,Fe 3 (PO 4) 2 n H 2 O.

На анодных участках происходит процесс окисления:

Fe
Fe 2+ + 2

На катодных участках происходит процесс восстановления водорода:

2Н + + 2
Н 2 (рН < 7)

При взаимодействии ионов Fe 2+ с анионами ортофосфорной кислоты и ее кислых солей образуются фосфатные пленки:

Fe 2+ + H 2 PO - 4
FeHPO 4 + H +

3Fe 2+ + 2 PO 4 3-
Fe 3 (PO 4) 2

Образующаяся фосфатная пленка химически связана с металлом и состоит из сросшихся между собой кристаллов, разделенных порами ультрамикроскопических размеров. Фосфатные пленки обладают хорошей адгезией, имеют развитую шероховатую поверхность. Они являются хорошим грунтом для нанесения лакокрасочных покрытий и пропитывающих смазок. Фосфатные покрытия применяются в основном для защиты металлов от коррозии в закрытых помещениях, а также как метод подготовки поверхности к последующей окраске или покрытию лаком. Недостатком фосфатных пленок является низкая прочность и эластичность, высокая хрупкость.

Анодирование – это процесс образования оксидных пленок на поверхности металла и прежде всего алюминия. В обычных условиях на поверхности алюминия присутствует тонкая оксидная пленка оксидов Al 2 O 3 или Al 2 O 3 ∙ nH 2 O, которая не может защитить его от коррозии. Под воздействием окружающей среды алюминий покрывается слоем продуктов коррозии. Процесс искусственного образования оксидных пленок может быть осуществлен химическим и электрохимическим способами. При электрохимическом оксидировании алюминия алюминиевое изделие играет роль анода электролизера. Электролитом служит раствор серной, ортофосфорной, хромовой, борной или щавелевой кислот, катодом может быть металл, не взаимодействующий с раствором электролита, например нержавеющая сталь. На катоде выделяется водород, на аноде происходит образование оксида алюминия. Суммарный процесс на аноде можно представить следующим уравнением:

2 Al + 3 H 2 O
Al 2 O 3 + 6 H + + 6

Используемые в настоящее время для защиты от коррозии лакокрасочные и гальванические покрытия обладают существенными недостатками. Что касается лакокрасочных покрытий, то, в первую очередь, это низкая степень надежности при механических повреждениях, низкий ресурс однослойных покрытий и высокая стоимость многослойных покрытий. Повреждение покрытия до защищаемого металла приводит к развитию подплёночной коррозии. В этом случае агрессивная среда попадает под изолирующий слой лакокрасочного покрытия, начинается коррозия основного металла, которая активно распространяется под слоем краски, что приводит к отслоению защитного слоя.

Что касается гальваники, то при достижении необходимых свойств, электролит, чувствителен к колебаниям температуры в течение всего процесса нанесения, который обычно длится несколько часов. Также при нанесении гальванических покрытий приходится использовать материалы и химикаты, многие из которых являются весьма вредными. Конкуренцию лакокрасочным, гальваническим, а также стеклоэмалевым, битумным, битумно-резиновым, полимерным и эпоксидным покрытиям и электрохимической защите составляют металлизационно-лакокрасочные покрытия Спрамет™ .

Спрамет™ — набор комбинированных металлизационно-лакокрасочных покрытий для защиты от коррозии на срок до 50 лет, каждое из которых обладает дополнительными свойствами — жаростойкостью, огнезащитными характеристиками, теплоизолирующими характеристиками и пр.

Системы Спрамет™ наносятся как в производственных условиях, так и в ремонтных — на месте эксплуатации объекта. Высокая стойкость Спрамет к механическим повреждениям, отсутствие подпленочной коррозии и цены сравнимые с качественной окраской делают эту систему идеальным выбором для долгосрочной защиты от коррозии особенно опасных и уникальных объектов.

Под воздействием основных эксплуатационных факторов старения (времени, совместно температуры и влаги, агрессивных сред, разницы электрохимических потенциалов) система защиты Спрамет не изменяет своих первоначальных свойств, выдерживает нагрев до 650°С, обладает высокими механическими характеристиками: износостойкостью, гибкостью, а также активно противостоит коррозии. Спрамет эффективно защищает сварные швы и в течение всего периода эксплуатации сохраняет защитные и декоративные свойства.

В совокупности затраты на эксплуатацию изделий, защищенных с помощью систем Спрамет в 2-4 раза меньше по сравнению с лакокрасочными или иными известными на сегодняшний день покрытиями.

ЗАО «Плакарт» провело широкомасштабные испытания и начало применение композиций Спрамет™ — протекторных систем защиты от коррозии на базе металлических матриц. Эти композиции состоят из одного или более слоев. Основа композиции — металлическая матрица: напыленный алюминий, цинк или их сплавы. Для улучшения эксплуатационных свойств наносится пропитывающий слой, закрывающий поры, затем — защитный или теплоизолирующий, а также колеровочный слои.

В ЗАО «Плакарт» разработана линейка композиций для решения задач различных условий эксплуатации:

  • Спрамет-АНТИКОР
  • Спрамет-ТЕРМО
  • Спрамет-НЕСКОЛЬЗИТ
  • Спрамет-НАНО

Преимуществами композиций Спрамет являются:

  • более высокая твердость,
  • стойкость к абразивному износу.

Для повышения защитных свойств применяются пропитки металлического покрытия специальными составами. Системы защиты Спрамет гарантируют срок эксплуатации объектов от 15 до 50 лет службы без коррозии.

Коррозионная стойкость композиций Спрамет обусловлена следующими факторами:

  • во-первых, базовый металлизационный слой системы Спрамет сам по себе хорошо защищает поверхность от коррозии;
  • в-вторых, пропитка пористой структуры металлической матрицы специальными составами усиливает антикоррозионные свойства системы в широком диапазоне агрессивных сред и температур;
  • в-третьих, при повреждении композиции Спрамет до защищаемого материала вступает в действие еще один механизм защиты, а именно протектор, который не позволяет развиваться подпленочной коррозии и затягивает местное повреждение.

При повреждении металлической матрицы в агрессивной среде защищаемый металл и металл покрытия в присутствии воды образуют гальваническую пару. Разность потенциалов в такой цепи определяется местоположением металлов в электрохимическом ряду напряжений. Поскольку защищаемым материалом, как правило, являются черные металлы, то материал покрытия начинает расходоваться, защищая металл основы и затягивая поврежденную область. В этом случае скорость коррозии определяется разностью электродных потенциалов пары. Кроме того, если повреждение покрытия незначительно (царапина), оно заполняется продуктами окисления материала покрытия, и процесс коррозии прекращается или существенно замедляется. Например, в морской и пресной воде алюминий и цинк расходуются со скоростью 3-10 микрон в год, обеспечивая не менее 25 лет стойкости к коррозии при толщине слоя в 250 мкм.

К плюсам обработки изделий защитными композициями Спрамет относятся следующие:

  • отсутствие ограничений по размерам изделий по сравнению с горячим цинкованием и гальваникой;
  • возможность защиты сварных швов после монтажа конструкции (в случае сварки оцинкованных изделий качество шва ухудшается вследствие попадания в сварную ванну соединений цинка);
  • возможность нанесения защиты Спрамет в полевых условиях, что неосуществимо ни в случае цинкования, ни в случае порошковой окраски.

Некоторые варианты применения системы защиты Спрамет

Спрамет-АНТИКОР
  • Спрамет-100 — система, стойкая к коррозии и к механическим воздействиям как при обычных условиях, так и при температурах до 650°С.
  • Спрамет-130 применяется для защиты от коррозии в пресной воде, имеет хорошую стойкость к воздействиям воды различного состава и механическим воздействиям льда.
  • Спрамет-150 применяется при атмосферной коррозии, имеет хорошую химостойкость, используется при хранении нефтепродуктов.
  • Спрамет-300 используется при атмосферной коррозии, температура эксплуатации до 400°С, имеет высокую адгезию.
  • Спрамет-310 лучше всего эксплуатируется в объектах тепло- и водо- снабжения, стоек к ингибиторам в системах подготовки воды.
  • Спрамет-320 применяется в очистных сооружениях ЖКХ: имеет высокую стойкость к воздействиям жидкостей с переменными pH.
  • Спрамет-330 применяется при атмосферной коррозии и коррозии в пресной воде при температуре эксплуатации до 120°С, он стоек к механическим воздействиям и имеет высокую адгезию.
  • Спрамет-430 применяется для защиты от атмосферной коррозии в присутствии хлоридов, стоек к противогололедным реагентам и обладает декоративным эффектом.
  • Спрамет-425 лучше использовать для защиты от коррозии в морской воде, стоек к механическим воздействиям, включая воздействие льда, имеет хорошую стойкость к хлоридам.
Спрамет-ТЕРМО

Антикоррозийная высокотемпературная система. Температура эксплуатации — до 650°С.

  • Спрамет-100 стойкая система к коррозии как при обычных условиях, так и при температурах до 650°С.
  • Спрамет-160. На металлическую матрицу наносится сертифицированное огнезащитный состав, который вспенивается при воздействии высокой температуры и обеспечивает огнестойкость до 60 минут.
Спрамет-НЕСКОЛЬЗИТ Спрамет-500 и 510 обеспечивают шероховатость обрабатываемой поверхности, что предотвращает проскальзывание персонала и техники. Применимо для металлических трапов морских платформ, вертолетных площадок, палуб и других пешеходных металлических дорожек. Спрамет-НАНО В этом случае металлическая матрица представляет собой наноструктурированное покрытие. Такое покрытие имеет еще более низкую пористость, гораздо более высокую стойкость к коррозионному и эрозионному износу, увеличенную жаропрочность, что существенно повышает ресурс защищаемого изделия.

В связи с повышенной надежностью и долговечностью композиции Спрамет рекомендуется применять тогда, когда к защищаемому объекту предъявляют повышенные требования: существенное увеличение межремонтного цикла или обеспечение антикоррозионной защиты на весь период эксплуатации металлоконструкций, а также при отсутствии доступа для восстановления защитных покрытий.

Практическое применение (2011 год)

Специалистами ЗАО «Плакарт» завершены работы по нанесению системы Спрамет-100 для защиты от коррозии выхлопных шахт газоперекачивающих агрегатов системы магистральных газопроводов ОАО «Газпром». Система, стойкая к коррозии как при обычных условиях, так и при температурах до 650°С, отличается ровным белым цветом поверхности, не боится механических повреждений, перепадов температур и ультрафиолетового излучения.

Выполнены работы по нанесению коррозионно-стойкой системы Спрамет-300 на ригели одного из вантовых мостов олимпийской трассы Альпика-Сервис. Олимпийские объекты, эксплуатируемые в сложных климатических условиях, требуют гарантированной долговременной защиты от коррозии. Система Спрамет-АНТИКОР не только превосходно защищает от коррозии, но и служит отличным праймером для лакокрасочных покрытий.

Выполнены работы по нанесению системы защиты Спрамет-150 на внутренние поверхности резервуаров для хранения нефтепродуктов в Астраханской области. Данная антикоррозионная система была нанесена на десятки тысяч квадратных метров внутренних поверхностей резервуара и плавающего в нём понтона.

С точки зрения стандартизации система «Спрамет» относится к группе комбинированных металлизационно-лакокрасочных покрытий, рекомендованных к применению на особо опасных и уникальных объектах СНИП 2.03.11 «Защита строительных конструкций от коррозии», а также многими отраслевыми стандартами и стандартами ISO.

Система качества ЗАО «Плакарт» сертифицирована по ISO 9001. ЗАО «Плакарт» является членом саморегулируемых организаций «Западуралстрой» и «Сопкор». Товарный знак Спрамет™ зарегистрирован и принадлежит ЗАО «Плакарт».

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Единая система защиты от коррозии и старения

МЕТАЛЛЫ И СПЛАВЫ

Методы определения
показателей коррозии
и коррозионной стойкости

ГОСТ 9.908-85

МОСКВА
ИПК ИЗДАТЕЛЬСТВО СТАНДАРТОВ
1999

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Дата введения 01.01.87

Настоящий стандарт устанавливает основные показатели коррозии и коррозионной стойкости (химического сопротивления) металлов и сплавов при сплошной, питтинговой, межкристаллитной, расслаивающей коррозии, коррозии пятнами, коррозионном растрескивании, коррозионной усталости и методы их определения. Показатели коррозии и коррозионной стойкости используют при коррозионных исследованиях, испытаниях, проверках оборудования и дефектации изделий в процессе производства, эксплуатации, хранения.

1. ПОКАЗАТЕЛИ КОРРОЗИИ И КОРРОЗИОННОЙ СТОЙКОСТИ

1.1. Показатели коррозии и коррозионной стойкости металла определяют в заданных условиях, учитывая их зависимость от химического состава и структуры металла, состава среды, температуры, гидро- и аэродинамических условий, вида и величины механических напряжений, а также назначение и конструкцию изделия. 1.2. Показатели коррозионной стойкости могут быть количественными, полуколичественными (балльными) и качественными. 1.3. Коррозионную стойкость следует, как правило, характеризовать количественными показателями, выбор которых определяется видом коррозии и эксплуатационными требованиями. Основой большинства таких показателей является время достижения заданной (допустимой) степени коррозионного поражения металла в определенных условиях. Показатели коррозионной стойкости, в первую очередь время до достижения допустимой глубины коррозионного поражения, во многих случаях определяют срок службы, долговечность и сохраняемость конструкций, оборудования и изделий. 1.4. Основные количественные показатели коррозии и коррозионной стойкости металла приведены в таблице. Для ряда коррозионных эффектов (интегральных показателей коррозии) приведены соответствующие им скоростные (дифференциальные) показатели коррозии.

Вид коррозии

Основные количественные показатели коррозии и коррозионной стойкости

Коррозионный эффект (интегральный показатель коррозии)

Скоростной (дифференциальный) показатель коррозии

Показатель коррозионной стойкости

Сплошная коррозия Глубина проникновения коррозии Линейная скорость коррозии Время проникновения коррозии на допустимую (заданную) глубину*
Потеря массы на единицу площади Скорость убыли массы Время до уменьшения массы на допустимую (заданную) величину*
Коррозия пятнами Степень поражения поверхности
Питтинговая коррозия Максимальная глубина питтинга Максимальная скорость проникновения питтинга Минимальное время проникновения питтингов на допустимую (заданную) глубину*
Максимальный размер поперечника питтинга в устье Минимальное время достижения допустимого (заданного) размера поперечника питтинга в устье*
Степень поражения поверхности питтингами Время достижения допустимой (заданной) степени поражения*
Межкристаллитная коррозия Время проникновения на допустимую (заданную) глубину*
Снижение механических свойств (относительного удлинения, сужения, ударной вязкости, временного сопротивления разрыву) Время снижения механических свойств до допустимого (заданного) уровня*
Коррозионное растрескивание Глубина (длина) трещин Скорость роста трещин Время до появления первой трещины**
Снижение механических свойств (относительного удлинения, сужения) Время до разрушения образца** Уровень безопасных напряжений** (условный предел длительной коррозионной прочности**) Пороговый коэффициент интенсивности напряжений при коррозионном растрескивании**
Коррозионная усталость Глубина (длина) трещин Скорость роста трещин Количество циклов до разрушения образца** Условный предел коррозионной усталости** Пороговый коэффициент интенсивности напряжений при коррозионной усталости**
Расслаивающая коррозия Степень поражения поверхности отслоениями Суммарная длина торцов с трещинами
Глубина проникновения коррозии Скорость проникновения коррозии
При линейной зависимости коррозионного эффекта от времени соответствующий скоростной показатель находят отношением изменения коррозионного эффекта за определенный интервал времени к величине этого интервала. При нелинейной зависимости коррозионного эффекта от времени соответствующий скоростной показатель коррозии находят как первую производную по времени графическим или аналитическим способом. 1.5. Показатели коррозионной стойкости, отмеченные в таблице знаком*, определяют из временной зависимости соответствующего интегрального показателя коррозии графическим способом, приведенным на схеме, или аналитически из его эмпирической временной зависимости у = f (t), находя для допустимого (заданного) значения у доп соответствующую величину t доп. Показатели коррозионной стойкости при воздействии на металл механических факторов, в том числе остаточных напряжений, отмеченные в таблице знаком**, определяют непосредственно при коррозионных испытаниях.

Схема зависимости коррозионного эффекта (интегрального показателя) у от времени

1.6. Допускается использование наряду с приведенными в таблице показателями других количественных показателей, определяемых эксплуатационными требованиями, высокой чувствительностью экспериментальных методов или возможностью использования их для дистанционного контроля процесса коррозии, при предварительном установлении зависимости между основным и применяемым показателями. В качестве подобных показателей коррозии с учетом ее вида и механизма могут быть использованы: количество выделившегося и (или) поглощенного металлом водорода, количество восстановившегося (поглощенного) кислорода, увеличение массы образца (при сохранении на нем твердых продуктов коррозии), изменение концентрации продуктов коррозии в среде (при их полной или частичной растворимости), увеличение электрического сопротивления, уменьшение отражательной способности, коэффициента теплопередачи, изменение акустической эмиссии, внутреннего трения и др. Для электрохимической коррозии допускается использование электрохимических показателей коррозии и коррозионной стойкости. При щелевой и контактной коррозии показатели коррозии и коррозионной стойкости выбирают по таблице в соответствии с видом коррозии (сплошная или питтинговая) в зоне щели (зазора) или контакта. 1.7. Для одного вида коррозии допускается характеризовать результаты коррозионных испытаний несколькими показателями коррозии. При наличии двух или более видов коррозии на одном образце (изделии) каждый вид коррозии характеризуют собственными показателями. Коррозионную стойкость в этом случае оценивают по показателю, определяющему работоспособность системы. 1.8. При невозможности или нецелесообразности определения количественных показателей коррозионной стойкости допускается использовать качественные показатели, например, изменение внешнего вида поверхности металла. При этом визуально устанавливают наличие потускнения; коррозионных поражений, наличие и характер слоя продуктов коррозии; наличие или отсутствие нежелательного изменения среды и др. На основе качественного показателя коррозионной стойкости дают оценку типа: стоек - не стоек; годен - не годен и др. Изменение внешнего вида допускается оценивать баллами условных шкал, например, для изделий электронной техники по ГОСТ 27597. 1.9. Допустимые показатели коррозии и коррозионной стойкости устанавливают в нормативно-технической документации на материал, изделие, оборудование.

2. ОПРЕДЕЛЕНИЕ ПОКАЗАТЕЛЕЙ КОРРОЗИИ

2.1. Сплошная коррозия 2.1.1. Потерю массы на единицу площади поверхности D m , кг/м 2 , вычисляют по формуле

Где m 0 - масса образца до испытаний, кг; m 1 - масса образца после испытаний и удаления продуктов коррозии, кг; S - площадь поверхности образца, м 2 . 2.1.2. При образовании трудноудаляемых твердых продуктов коррозии или нецелесообразности их удаления количественную оценку сплошной коррозии проводят по увеличению массы. Увеличение массы на единицу площади поверхности вычисляют по разности масс образца до и после испытаний, отнесенной к единице площади поверхности образца. Для вычисления потери массы металла по увеличению массы образца необходимо знать состав продуктов коррозии. Данный показатель коррозии металла в газах при высокой температуре определяют по ГОСТ 6130. 2.1.3. Продукты коррозии удаляют по ГОСТ 9.907 . 2.1.4. Изменение размеров определяют прямыми измерениями по разности между размерами образца до и после испытаний и удаления продуктов коррозии. При необходимости изменение размеров по потере массы с учетом геометрии образца, например, изменение толщины плоского образца D L , м, вычисляют по формуле

Где D m - потери массы на единицу площади, кг/м 2 ; ρ - плотность металла, кг/м 3 . 2.2. Коррозия пятнами 2.2.1. Площадь каждого пятна определяют планиметром. При невозможности такого измерения пятно очерчивают прямоугольником и вычисляют его площадь. 2.2.2. Степень поражения поверхности металла коррозией пятнами ( G ) в процентах вычисляют по формуле

Где S i - площадь i -того пятна, м 2 ; n - количество пятен; S - площадь поверхности образца, м 2 . Допускается при коррозии пятнами определять степень поражения поверхности коррозией с помощью сетки квадратов. 2.3. Питтинговая коррозия 2.3.1. Максимальную глубину проникновения питтинговой коррозии определяют: измерением механическим индикатором с передвижным игольчатым щупом расстояния между плоскостью устья и дном питтинга после удаления продуктов коррозии в случаях, когда размеры питтинга позволяют осуществлять свободное проникновение игольчатого щупа к его дну; микроскопически, после удаления продуктов коррозии измерением расстояния между плоскостью устья и дном питтинга (метод двойной фокусировки); микроскопически на поперечном шлифе при соответствующем увеличении; последовательным механическим удалением слоев металла заданной толщины, например, по 0,01 мм до исчезновения последних питтингов. Учитывают питтинги с поперечником устья не менее 10 мкм. Суммарная площадь рабочей поверхности должна быть не менее 0,005 м 2 . 2.3.2. Шлиф для измерения максимальной глубины проникновения питтинговой коррозии вырезают из области расположения наиболее крупных питтингов на рабочей поверхности. Линия разреза должна проходить через возможно большее число таких питтингов. 2.3.3. Максимальную глубину проникновения питтинговой коррозии находят как среднее арифметическое измерений наиболее глубоких питтингов в зависимости от их количества ( n ) на поверхности: при n < 10 измеряют 1-2 питтинга, при n < 20 - 3-4, при n > 20 - 5. 2.3.4. При сквозной питтинговой коррозии за максимальную глубину проникновения принимают толщину образца. 2.3.5. Максимальный размер поперечника питтинга определяют с помощью измерительных инструментов или оптических средств. 2.3.6. Степень поражения поверхности металла питтингами выражают долей поверхности, занятой питтингами, в процентах. При наличии большого числа питтингов с поперечником более 1 мм рекомендуется степень поражения определять по п. 2.2. 2.4. Межкристаллитная коррозия 2.4.1. Глубину межкристаллитной коррозии определяют металлографическим методом по ГОСТ 1778 на травленом шлифе, изготовленном в поперечной плоскости образца, на расстоянии от кромок не менее чем 5 мм при увеличении 50 ´ и более. Допускается определять глубину проникновения коррозии алюминия и алюминиевых сплавов на нетравленых шлифах. Режим травления - по ГОСТ 6032, ГОСТ 9.021 и НТД. (Измененная редакция, Изм. № 1). 2.4.2. Изменение механических свойств при межкристаллитной коррозии - временного сопротивления разрыву, относительного удлинения, ударной вязкости - определяют сравнением свойств образцов металла, подвергавшихся и не подвергавшихся коррозии. Механические свойства образцов металла, не подвергавшихся коррозии, принимают за 100 %. 2.4.3. Образцы изготовляют по ГОСТ 1497 и ГОСТ 11701 при определении временного сопротивления разрыву и относительного удлинения и по ГОСТ 9454 - при определении ударной вязкости. 2.4.4. Допускается применять физические методы контроля глубины проникновения коррозии по ГОСТ 6032 . 2.5. Коррозионное растрескивание и коррозионная усталость 2.5.1. При коррозионном растрескивании и коррозионной усталости трещины выявляют визуально или с применением оптических или других дефектоскопических средств контроля. Допускается применение косвенных методов измерения, например, определение увеличения электрического сопротивления образца. 2.5.2. Изменение механических свойств определяют по п. 2.4.2. 2.6. Расслаивающая коррозия 2.6.1. Степень поражения поверхности при расслаивающей коррозии выражают долей в процентах площади с отслаиваниями на каждой поверхности образца по ГОСТ 9.904 . 2.6.2. Суммарную длину торцов с трещинами для каждого образца ( L ) в процентах вычисляют по формуле

Где L i - длина участка торца, пораженного трещинами, м; П - периметр образца, м. 2.6.3. Допускается использовать в качестве обобщенного полуколичественного (балльного) показателя расслаивающей коррозии балл условной шкалы по ГОСТ 9.904 .

3. ОПРЕДЕЛЕНИЕ ПОКАЗАТЕЛЕЙ КОРРОЗИОННОЙ СТОЙКОСТИ

3.1. Сплошная коррозия 3.1.1. Основные количественные показатели коррозионной стойкости против сплошной коррозии при отсутствии специальных требований, например, в части загрязнения среды, определяют по таблице. 3.1.2. При протекании сплошной коррозии с постоянной скоростью показатели коррозионной стойкости определяют по формулам:

Где t m - время до уменьшения массы на единицу площади на допустимую величину D m , год; v m - скорость убыли массы, кг/м 2 ∙год; t 1 - время проникновения на допустимую (заданную) глубину ( l ), год; v 1 - линейная скорость коррозии, м/год. 3.1.3. При протекании сплошной коррозии с непостоянной скоростью показатели коррозионной стойкости определяют по п. 1.5. 3.1.4. При наличии специальных требований к оптическим, электрическим и другим свойствам металла, его коррозионная стойкость оценивается временем изменения указанных свойств до допустимого (заданного) уровня. 3.2. Коррозия пятнами Показателем коррозионной стойкости при коррозии пятнами является время (t n ) достижения допустимой степени поражения поверхности. Значение t n определяют графически по п. 1.5. 3.3. Питтинговая коррозия 3.3.1. Основным показателем коррозионной стойкости против питтинговой коррозии является отсутствие питтингов или минимальное время (t пит) проникновения питтинга на допустимую (заданную) глубину. t пит определяют графически из зависимости максимальной глубины питтингов l max от времени. 3.3.2. Показателем стойкости против питтинговой коррозии может служить также время достижения допустимой степени поражения поверхности питтингами. 3.4. Межкристаллитная коррозия 3.4.1. Показатели коррозионной стойкости против межкристаллитной коррозии в общем случае определяют графически или аналитически из временной зависимости глубины проникновения или механических свойств в соответствии с п. 1.5. 3.4.2. Качественную оценку стойкости против межкристаллитной коррозии типа стоек - не стоек на основе ускоренных испытаний коррозионно-стойких сплавов и стали устанавливают по ГОСТ 6032 , алюминиевых сплавов - по ГОСТ 9.021 . 3.5. Коррозионное растрескивание 3.5.1. Количественные показатели стойкости против коррозионного растрескивания определяют для высокопрочных сталей и сплавов по ГОСТ 9.903 , для алюминиевых и магниевых сплавов - по ГОСТ 9.019 , сварных соединений стали, медных и титановых сплавов - по ГОСТ 26294-84 . 3.6. Расслаивающая коррозия 3.6.1. Показатели стойкости против расслаивающей коррозии для алюминия и его сплавов определяют по ГОСТ 9.904 , для других материалов - по НТД.

4. ОБРАБОТКА РЕЗУЛЬТАТОВ

4.1. Рекомендуется проводить предварительную обработку результатов с целью выявления анормальных (выпадающих) значений. 4.2. Зависимость коррозионного эффекта (интегрального показателя коррозии) от времени в случае его монотонного изменения рекомендуется выражать графически, используя для построения не менее четырех значений показателя. 4.3. Результаты расчета показателей коррозии и коррозионной стойкости рекомендуется выражать доверительным интервалом числового значения показателя. 4.4. Уравнение регрессии, доверительные интервалы и точность анализа определяют по ГОСТ 20736 , ГОСТ 18321 . 4.5. Металлографический метод оценки коррозионных поражений приведен в приложении 1. (Введен дополнительно, Изм. № 1). ПРИЛОЖЕНИЕ. (Исключено, Изм. № 1).

ПРИЛОЖЕНИЕ 1

Обязательное

МЕТАЛЛОГРАФИЧЕСКИЙ МЕТОД ОЦЕНКИ КОРРОЗИОННЫХ ПОРАЖЕНИЙ

1. Сущность метода

Метод основан на определении типа коррозии, формы коррозионного поражения, распределения коррозионного поражения в металлах, сплавах и защитных металлических покрытиях (далее - материалах) с помощью сравнения с соответствующими типовыми формами, а также измерения глубины коррозионного поражения на металлографическом шлифе.

2. Образцы

2.1. Место отбора образцов из испытуемого материала выбирают на основании результатов визуального (невооруженным глазом или с помощью лупы) осмотра поверхности или неразрушающей дефектоскопии. 2.2. Образцы вырезают из следующих мест материала: 1) если коррозией поражена только часть поверхности материала, образцы отбирают в трех местах: из части, пораженной коррозией; из части, не пораженной коррозией, и на участке между ними; 2) если имеются участки поверхности материала с различными видами коррозии или с различной глубиной коррозионного поражения, образцы отбирают из всех участков, пораженных коррозией; 3) если на поверхности материала имеется один тип коррозионного поражения, образцы отбирают не менее чем из трех характерных участков исследуемого материала. 2.3. При необходимости отбирают не менее одного образца из не менее пяти функционально необходимых участков испытуемого материала. Размер образца определяют, исходя из размеров зоны коррозионного поражения. 2.4. Образцы вырезают таким образом, чтобы плоскость шлифа была перпендикулярна исследуемой поверхности. Способ изготовления не должен влиять на структуру материала и разрушать поверхностный слой и кромки образца. Для материалов с защитными покрытиями не допускается повреждение покрытия и отрыв его от основного материала. 2.5. Маркировка образца - по ГОСТ 9.905. 2.6. При изготовлении металлографического шлифа с поверхности образца удаляют все следы вырезки, например, заусенцы. 2.7. При операциях шлифования и полирования шлифа необходимо следить за тем, чтобы не изменился характер и размер коррозионного поражения. Кромки шлифа в месте коррозионного поражения не должны иметь закруглений. Допускаются закругления, не влияющие на точность определения коррозионного поражения. Для этого рекомендуется заливать образец в заливную массу таким образом, чтобы исследуемая кромка находилась на расстоянии не менее 10 мм от края шлифа. Полировку проводят кратковременно при помощи алмазных паст. 2.8. Оценку шлифа проводят до и после травления. Травление позволяет установить различие между коррозионным поражением и структурой материала. При травлении не должен быть изменен характер и размеры коррозионного поражения.

3. Проведение испытания

3.1. Определение и оценка типа коррозии, формы коррозионного поражения и его распределения в материале 3.1.1. При проведении испытания необходимо учитывать химический состав испытуемого материала, способ его обработки, а также все коррозионные факторы. 3.1.2. Испытание проводят на металлографическом шлифе под микроскопом при увеличении 50, 100, 500 и 1000 ´ . 3.1.3. При определении типа коррозии контроль коррозионного поражения проводят по всей длине шлифа. На одном образце допускается определять несколько типов коррозии. 3.1.4. При испытании защитных покрытий определение типа коррозии покрытия и основного материала проводят отдельно. 3.1.5. Если на материал кроме коррозионной среды действуют и другие факторы, влияющие на изменение структуры материала, например, высокая температура, механические воздействия, коррозионное поражение определяют путем сравнения материала с конкретным образцом, подвергнутым влиянию аналогичных факторов, но защищенным от воздействия коррозионной среды. 3.1.6. Оценку формы коррозионного поражения и определение типа коррозии проводят путем сравнения с типовыми схемами коррозионного поражения по приложению 2, распределение коррозионного поражения в материале - по приложению 3. 3.2. Измерение глубины коррозионного поражения 3.2.1. Глубину коррозионного поражения определяют на микрометаллографическом шлифе с помощью окулярной шкалы и микрометрического винта микроскопа. 3.2.2. Глубину коррозионного поражения определяют по разности толщины металла прокоррозировавшего участка поверхности шлифа и участка поверхности без наличия коррозии или измерением глубины поражения от поверхности, не разрушенной или незначительно разрушенной коррозией. При испытании материала с защитным покрытием результаты измерения глубины коррозионного поражения покрытия и основного металла определяют отдельно. 3.2.3. Если коррозией поражена вся поверхность образца и глубина коррозионного поражения на разных участках поверхности заметно не различается, например в случае межкристаллитной или транскристаллитной коррозии, глубину коррозионного поражения измеряют не менее чем на 10 участках поверхности. У образцов больших размеров проводят измерения не менее чем на 10 участках на каждые 20 мм длины контролируемой поверхности, учитывая самые глубокие поражения. 3.2.4. При локальном коррозионном поражении (например, питтинговая коррозия или коррозия пятнами) измерения проводят в местах данного коррозионного поражения, причем количество участков для измерений может отличаться от требований, приведенных в п. 3.2.3. 3.2.5. Для уточнения определения максимальной глубины коррозионного поражения после металлографической оценки шлифов проводят их повторную перешлифовку: 1) у образцов с локальным коррозионным поражением, например, коррозия пятнами или питтинговая коррозия - до максимальной глубины коррозионного поражения, т.е. до момента, когда измеренная глубина меньше, чем предшествующий результат измерения; 2) у образцов с почти одинаковой глубиной коррозионного поражения на разных участках поверхности после оценки проводят перешлифовку и изготовляют новый металлографический шлиф, на котором опять проводят оценку коррозионного поражения. 3.2.6. Погрешность измерения глубины коррозионного поражения не более ±10 %.

4. Протокол испытания - по ГОСТ 9.905

ПРИЛОЖЕНИЕ 1. (Введено дополнительно, Изм. № 1).

ПРИЛОЖЕНИЕ 2

Обязательное

ТИПЫ КОРРОЗИИ

Тип коррозии

Характеристика формы коррозионного поражения

Схема типичного вида коррозионного поражения

1. Сплошная (равномерная) коррозия Формы коррозионного поражения 1а и 1б отличаются только неровностью поверхности. По изменению формы поверхности до и после коррозионного испытания выявляют наличие коррозии: она определяется изменением массы и размеров образцов до и после коррозионного испытания

Форма 1в может быть переходной между сплошной и избирательной коррозией, например, 10в, 10г и 10е Тип коррозии может быть уточнен по изменениям ее формы в зависимости от времени воздействия коррозионной среды, а также по структуре металла

2. Местная (неравномерная) коррозия По форме соответствует сплошной коррозии, но отличается тем, что коррозии подвержена часть поверхности или коррозия протекает с разной скоростью на его отдельных участках
3. Коррозия пятнами Мелкое коррозионное поражение неправильной формы; размер его площади в случае небольшого увеличения может превышать размер поля зрения

4. Коррозионная язва Коррозионное поражение глубиной приблизительно равной ширине

5. Питтинговая коррозия Коррозионное поражение глубиной значительно больше ширины

6. Подповерхностная коррозия Коррозионное поражение, характерное тем, что занимает на поверхности небольшую площадь и преимущественно сосредоточена под поверхностью металла

Форма коррозионного поражения, отдельные зоны которого находятся под поверхностью и обычно не имеют заметного прямого выхода на поверхность

7. Слоевая коррозия Коррозионное поражение, внутренние слои которого включают зерна различного размера, различные фазы, включения, выделения и др.
8. Межкристаллитная коррозия Коррозионное поражение характерно наличием прокорродировавшей зоны вдоль границ зерен металла, причем может затрагивать границы всех зерен или только отдельных зерен

9. Транскристаллитная коррозия Коррозионное поражение характерно наличием большого количества транскристаллитных трещин

10. Избирательная коррозия Коррозионное поражение, которому подвергнута определенная структурная фаза или компонент; если фаза образована эвтектикой, определяют, прокорродирована вся эвтектика или некоторая ее составляющая, например, цементит

Коррозионное поражение, которому подвергнута определенная фаза металла без прямого контакта с прокорродировавшей поверхностью. В этом случае определяют, корродируют ли фазы по границам зерен или внутри зерен основной структуры. Далее определяют, не отличаются ли границы между корродирующими фазами от остальных границ (наличие фазы, трещин). Из этого заключают, проникает ли коррозионная среда по границам зерен или диффузией по всему объему зерен
Коррозионное поражение, которому подвергнуты только отдельные зерна, физическое состояние которых изменилось, например, вследствие деформации

Коррозионное поражение, которому подвергнуты только деформируемые части зерен, при этом образующаяся зона коррозионного поражения уже, чем одно зерно и проходит через несколько зерен. Одновременно определяют, не повлияла ли деформация на изменение структуры металла, например, переход аустенита в мартенсит

Коррозионное поражение в виде зоны с рядами выделенных включений; при этом определяют возможное изменение структуры в данной зоне

Коррозионное поражение в виде широкой зоны вдоль границы зерна. Данная форма может быть временной и ее нельзя относить к межкристаллитной коррозии; она характерна тем, что не проникает в глубину металла. Более точно ее можно определить по изменениям формы поражения коррозией в зависимости от времени коррозионного воздействия и по выделению структурных частиц в корродирующем сплаве
Коррозионное поражение, в результате которого образуется новая фаза металлического вида, обладающая способностью понижать стойкость металла
Коррозионное поражение, в результате которого изменяется химический состав фазы при сохранении ее формы и местоположения, например, графитизация пластин цементита в чугуне, обесцинкование латуни и др. В зоне этого изменения могут образовываться и другие продукты коррозии, например, окислы

11. Коррозия в виде редких трещин Коррозионное поражение, в результате которого образуется глубокая, немного ветвистая трещина, широкая вблизи поверхности с постепенным переходом в незначительную ширину; трещина заполнена продуктами коррозии

Коррозионное поражение в виде глубокой трещины незначительной ширины, исходящей из коррозионной язвы на поверхности; трещина может иметь ветвистую форму

Коррозионное поражение, в результате которого образуется межкристаллитная трещина незначительной ширины при отсутствии продуктов коррозии. По сравнению с межкристаллитной коррозией имеет вид единичных (редких) трещин

Коррозионное поражение, в результате которого образуется транскристаллитная трещина незначительной ширины со значительным разветвлением. По сравнению с транскристаллитной коррозией имеет вид единичных (редких) трещин. Некоторые трещины могут иметь тип частично транскристаллитного и частично межкристаллитного коррозионного поражения
Коррозионное поражение, в результате которого образуются трещины незначительной ширины, имеющие вид нитей, преимущественно параллельные поверхности и создающие зону определенной глубины. Их нельзя относить к аналогичным трещинам, образующимся вследствие деформации или плохой обработки образца

Коррозионное поражение в виде мелких преимущественно коротких трещин внутри отдельных зерен. Трещины могут образоваться, например, вследствие действия молекулярного водорода, большого напряжения, коррозии определенной фазы
ПРИЛОЖЕНИ Е 2. (Введено дополнительно, Изм. № 1).

ПРИЛОЖЕНИЕ 3

Обязательное

РАСПРЕДЕЛЕНИЕ КОРРОЗИИ

ПРИЛОЖЕНИЕ 3. (Введено дополнительно, Изм. № 1).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Государственным комитетом СССР по управлению качеством продукции и стандартам РАЗРАБОТЧИКИ Л.И. Топчиашвили, Г.В. Козлова, канд. техн. наук (руководители темы); В.А. Атанова, Г.С. Фомин, канд. хим. наук, Л.М. Самойлова, И.Е. Трофимова 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 31.10.85 № 3526 3. Стандарт полностью соответствует СТ СЭВ 4815-84, СТ СЭВ 6445-88 4. ВВЕДЕН ВПЕРВЫЕ 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Номер пункта, приложения

Номер пункта, приложения

ГОСТ 9.019-74 3.5.1 ГОСТ 6032-89 2.4.1; 2.4.4; 3.4.2
ГОСТ 9.021-74 2.4.1; 3.4.2 ГОСТ 6130-71 2.1.2
ГОСТ 9.903-81 3.5.1 ГОСТ 9454-78 2.4.3
ГОСТ 9.904-82 2.6.1; 2.6.3; 3.6.1 ГОСТ 11701-84 2.4.3
ГОСТ 9.905-82 Приложение 1 ГОСТ 18321-73 4.4
ГОСТ 9.907-83 2.1.3 ГОСТ 20736-75 4.4
ГОСТ 1497-84 2.4.3 ГОСТ 26294-84 3.5.1
ГОСТ 1778-70 2.4.1 ГОСТ 27597-88 1.8
6. ПЕРЕИЗДАНИЕ с Изменением № 1, утвержденным в октябре 1989 г. (ИУС 2-90)

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2-97 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Порядок разработки, принятия, применения, обновления и отмены»

Сведения о стандарте

1. РАЗРАБОТАН Техническим комитетом по стандартизации ТК 214 «Защита изделий и материалов от коррозии» (ГУП Ордена Трудового Красного Знамени Академия коммунального хозяйства им. К.Д. Памфилова, ГУП ВНЙИ железнодорожного транспорта, ФГУП «ВНИИ стандарт»)

2. ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии

3. ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол № 27 от 22 июня 2005 г.)

Краткое наименование страны по МК (ИСО3166)004-97 Код страны по МК (ИСО 3166) 004-97 Сокращенное наименование национального органа по стандартизации
Азербайджан AZ Азстандарт
Армения AM Министерство торговли и экономического развития Республики Армения
Беларусь BY Госстандарт Республики Беларусь
Казахстан KZ Госстандарт Республики Казахстан
Кыргызстан KG Кыргызстандарт
Молдова MD Молдова-Стандарт
Российская Федерация RU Федеральное агентство по техническому регулированию и метрологии
Таджикистан TJ Таджикстандарт
Туркменистан TM Главгосслужба «Туркменстандартлары»
Узбекистан UZ Узстандарт

4. В настоящем стандарте учтены основные нормативные положения Руководства ИСО/МЭК 21:1999 «Принятие международных стандартов в качестве региональных или национальных стандартов».

(ISO/IEC Guide 21:1999«Regional or national adoption of international standards deliverables»)

5. Приказом Федерального агентства по техническому регулированию и метрологии от 25 октября 2005 г. № 262-ст межгосударственный стандарт ГОСТ 9.602-2005 введен в действие непосредственно в качестве национального стандарта Российской Федерации с 1 января 2007г.

6. ВЗАМЕН ГОСТ 9.602-89

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему публикуется в указателе «Национальные стандарты».



Информация об изменениях к настоящему стандарту публикуется в указателе «Национальные стандарты», а текст изменений - в информационных указателях «Национальные стандарты». В случае пересмотра или отмены настоящего стандарта соответствующая информация будет опубликована в информационном указателе «Национальные стандарты»


Предисловие Сведения о стандарте Введение Общие требования к защите от коррозии 1. Область применения 2. Нормативные ссылки 3. Общие положения 4. Критерии опасности коррозии 5 Выбор методов защиты от коррозии 6. Требования к защитным покрытиям и методы контроля качества 7. Требования к электрохимической защите 8. Требования ограничения токов утечки на источниках блуждающих токов 9. Требования при выполнении работ по противокоррозионной защите Приложение А (справочное) Определение удельного электрического сопротивления грунта Приложение Б (справочное) Определение средней плотности катодного тока Приложение В (справочное) Определение биокоррозионной агрессивности грунта Приложение Г (справочное) Определение опасного влияния блуждающего постоянного тока Приложение Д (справочное) Определение наличия блуждающих токов в земле Приложение Е (справочное) Определение наличия тока в подземных сооружениях связи Приложение Ж (справочное) Определение опасного влияния переменного тока Приложение И (справочное) Определение адгезии защитных покрытий Приложение К (справочное) Определение адгезии покрытия к стали после выдержки в воде Приложение Л (справочное) Определение площади отслаивания защитных покрытий при катодной поляризации Приложение М (справочное) Определение переходного электрического сопротивления изоляционного покрытия Приложение Н (справочное) Определение сопротивления вдавливанию Приложение П (справочное) Покрытия для защиты от наружной коррозии трубопроводов тепловых сетей и условия их прокладки Приложение Р (справочное) Измерение поляризационных потенциалов при электрохимической защите Приложение С (справочное) Определение суммарного потенциала сооружения, находящегося под электрохимической защитой Приложение Т (справочное) Измерение потенциала трубопровода канальной прокладки при электрохимической защите трубопроводов с расположением анодного заземления в канале Приложение У (справочное) Определение минимального поляризационного защитного потенциала подземных стальных трубопроводов по смещению от стационарного потенциала Библиография

Введение



Подземные металлические трубопроводы, кабели и другие сооружения являются одной из самых капиталоемких отраслей экономики. От их нормального, бесперебойного функционирования зависит жизнеобеспеченность городов и населенных пунктов.

Наибольшее влияние на условия эксплуатации и срок службы подземных металлических сооружений оказывает коррозионная и биокоррозионная агрессивность окружающей среды, а также блуждающие постоянные токи, источником которых является рельсовый электрифицированный транспорт, и переменные токи промышленной частоты.

Воздействие каждого из указанных факторов и тем более их сочетания может в несколько раз сократить срок службы стальных подземных сооружений и привести к необходимости преждевременной перекладки морально не устаревших трубопроводов и кабелей.

Единственно возможным способом борьбы с этим негативным явлением является своевременное применение мер по противокоррозионной защите стальных подземных сооружений.

В настоящем стандарте учтены новейшие научно-технические разработки и достижения в практике противокоррозионной защиты, накопленные эксплуатационными, строительными и проектными организациями.

В настоящем стандарте установлены критерии опасности коррозии и методы их определения; требования к защитным покрытиям, нормативы их качества для разных условий эксплуатации подземных сооружений (адгезия изоляции к поверхности трубы, адгезия между слоями покрытий, стойкость к растрескиванию, стойкость к удару, стойкость к УФ-радиации и др.) и методы оценки качества покрытий; регламентируются требования к электрохимической защите, а также методы контроля эффективности противокоррозионной защиты.

Внедрение настоящего стандарта позволит увеличить срок службы и надежность эксплуатации подземных металлических сооружений, сократить расходы на их эксплуатацию и капитальный ремонт.

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ
Единая система защиты от коррозии и старения Сооружения подземные Общие требования к защите от коррозии Unified system of corrosion and ageing protection. Underground constructions. General requirements for corrosion protection

Дата введения - 2007-01-01

Область применения

Настоящий стандарт устанавливает общие требования к защите от коррозии наружной поверхности подземных металлических сооружений (далее - сооружения): трубопроводов и резервуаров (в том числе траншейного типа) из углеродистых и низколегированных сталей, силовых кабелей напряжением до 10кВ включительно; кабелей связи и сигнализации в металлической оболочке, стальных конструкций необслуживаемых усилительных (НУП) и регенерационных (НРП) пунктов линий связи, а также требования к объектам, являющимся источниками блуждающих токов, в том числе электрифицированному рельсовому транспорту, линиям передач постоянного тока по системе «провод-земля», промышленным предприятиям, потребляющим постоянный ток в технологических целях.

Стандарт не распространяется на следующие сооружения: кабели связи с защитным покровом шлангового типа; железобетонные и чугунные сооружения; коммуникации, прокладываемые в туннелях, зданиях и коллекторах; сваи, шпунты, колонны и другие подобные металлические сооружения; магистральные трубопроводы, транспортирующие природный газ, нефть, нефтепродукты, и отводы от них; трубопроводы компрессорных, перекачивающих и насосных станций, нефтебаз и головных сооружений нефтегазопромыслов; установки комплексной подготовки газа и нефти; трубопроводы тепловых сетей с пенополиуретановой тепловой изоляцией и трубой-оболочкой из жесткого полиэтилена (конструкция «труба в трубе»), имеющие действующую систему оперативного дистанционного контроля состояния изоляции трубопроводов; металлические сооружения, расположенные в многолетнемерзлых грунтах.

ГОСТ 9.048-89 Единая система защиты от коррозии и старения. Изделия технические. Методы лабораторных испытаний на стойкость к воздействию плесневых грибов

ГОСТ 9.049-91 Единая система защиты от коррозии и старения. Материалы полимерные и их компоненты. Методы лабораторных испытаний на стойкость к воздействию плесневых грибов

ГОСТ 12.0.004-90 Система стандартов безопасности труда. Организация обучения безопасности труда. Общие положения

ГОСТ 12.1.003-83 Система стандартов безопасности труда. Шум. Общие требования безопасности

ГОСТ 12.1.005-88 Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны

ГОСТ 12.2.004-75 Система стандартов безопасности труда. Машины и механизмы специальные для трубопроводного строительства. Требования безопасности

ГОСТ 12.3.005-75 Система стандартов безопасности труда. Работы окрасочные. Общие требования безопасности

ГОСТ 12.3.008-75 Система стандартов безопасности труда. Производство покрытий металлических и неметаллических неорганических. Общие требования безопасности

ГОСТ 12.3.016-87 Система стандартов безопасности труда. Строительство. Работы антикоррозионные. Требования безопасности

ГОСТ 12.4.026-76 1) Система стандартов безопасности труда. Цвета сигнальные и знаки безопасности

ГОСТ 112-78 Термометры метеорологические стеклянные. Технические условия

ГОСТ 411-77 Резина и клей. Методы определения прочности связи с металлом при отслаивании

ГОСТ 427-75 Линейки измерительные металлические. Технические условия

ГОСТ 1050-88 Прокат сортовой калиброванный со специальной отделкой поверхности из углеродистой качественной конструкционной стали. Общие технические условия

ГОСТ 2583-92 Батареи из цилиндрических марганцево-цинковых элементов с солевым электролитом. Технические условия

ГОСТ 2678-94 Материалы рулонные кровельные и гидроизоляционные. Методы испытаний

ГОСТ 2768-84 Ацетон технический. Технические условия

ГОСТ 4166-76 Натрий сернокислый. Технические условия

ГОСТ 4650-80 Пластмассы. Методы определения водопоглощения

ГОСТ 5180-84 Грунты. Методы лабораторного определения физических характеристик.

ГОСТ 5378-88 Угломеры с нониусом. Технические условия

ГОСТ 6055-86 2) Вода. Единица жесткости

ГОСТ 6323-79 Провода с поливинилхлоридной изоляцией для электрических установок. Технические условия

ГОСТ 6456-82 Шкурка шлифовальная бумажная. Технические условия

ГОСТ 6709-72 Вода дистиллированная. Технические условия.

ГОСТ 7006-72 Покровы защитные кабелей. Конструкция и типы, технические требования и методы испытаний

ГОСТ 8711-93 (МЭК51-2-84) Приборы аналоговые показывающие электроизмерительные прямого действия и вспомогательные части к ним. Часть 2. Особые требования к амперметрам и вольтметрам

ГОСТ 9812-74 Битумы нефтяные изоляционные. Технические условия

ГОСТ 11262-80 Пластмассы. Метод испытания на растяжение.

ГОСТ 12026-76 Бумага фильтровальная лабораторная. Технические условия

ГОСТ 13518-68 Пластмассы. Метод определения стойкости полиэтилена к растрескиванию под напряжением.

ГОСТ 14236-81 Пленки полимерные. Метод испытаний на растяжение.

ГОСТ 14261-77 Кислота соляная особой чистоты. Технические условия.

ГОСТ 15140-78 Материалы лакокрасочные. Методы определения адгезии.

ГОСТ 16337-77 Полиэтилен высокого давления. Технические условия

ГОСТ 16783-71 Пластмассы. Метод определения температуры хрупкости при сдавливании образца, сложенного петлей

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 25812-83 3) Трубопроводы стальные магистральные. Общие требования к защите от коррозии

ГОСТ 29227-91 (ИСО 835-1-81) Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования.

Примечание: При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов по указателю «Национальные стандарты», составленному по состоянию на 1 января текущего года, и по соответствующим информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться замененным (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

1) В Российской Федерации действует ГОСТ Р 12.4.026-2001 «Система стандартов безопасности труда. Цвета сигнальные, знаки безопасности и разметка сигнальная. Назначение и правила применения. Общие технические требования и характеристики. Методы испытаний».

2) В Российской Федерации действует ГОСТ Р 52029-2003 «Вода. Единица жесткости».

3) В Российской Федерации действует ГОСТ Р 51164-98 «Трубопроводы стальные магистральные. Общие требования к защите от коррозии».

Общие положения

3.1. Требования настоящего стандарта учитывают при проектировании, строительстве, реконструкции, ремонте, эксплуатации подземных сооружений, а также объектов, являющихся источниками блуждающих токов. Настоящий стандарт является основанием для разработки нормативных документов (НД) по защите конкретных видов подземных металлических сооружений и мероприятий по ограничению блуждающих токов (токов утечки).

3.2. Средства защиты от коррозии (материалы и конструкция покрытий, станции катодной защиты, приборы контроля качества изоляционных покрытий и определения опасности коррозии и эффективности противокоррозионной защиты) применяют только соответствующие требованиям настоящего стандарта и имеющие сертификат соответствия.

3.3. При разработке проекта строительства сооружений одновременно разрабатывают проект защиты их от коррозии.

Примечание: Для кабелей сигнализации, централизации и блокировки (СЦБ), силовых и связи, применяемых на железной дороге, когда определить параметры электрохимической защиты на стадии разработки проекта не представляется возможным, рабочие чертежи электрохимической защиты допускается разрабатывать по­сле прокладки кабелей на основании данных по измерениям и пробным включениям защитных устройств в сроки, установленные НД.

3.4. Мероприятия по защите от коррозии строящихся, действующих и реконструируемых сооружений предусматривают в проектах защиты в соответствии с требованиями настоящего стандарта.

В проектах строительства и реконструкции сооружений, являющихся источниками блуждающих токов, предусматривают мероприятия по ограничению токов утечки.

3.5. Все виды защиты от коррозии, предусмотренные проектом строительства, принимают в эксплуатацию до сдачи в эксплуатацию сооружений. В процессе строительства для подземных стальных газопроводов и резервуаров сжиженного газа электрохимическую защиту вводят в действие в зонах опасного влияния блуждающих токов не позднее одного месяца, а в остальных случаях - не позднее шести месяцев после укладки сооружения в грунт; для сооружений связи - не позднее шести месяцев после их укладки в грунт.

Не допускается ввод в эксплуатацию объектов, являющихся источниками блуждающих токов, до проведения всех предусмотренных проектом мероприятий по ограничению этих токов.

3.6. Защиту сооружений от коррозии выполняют так, чтобы не ухудшить защиту от электромагнитных влияний и ударов молнии.

3.7. При эксплуатации сооружений систематически проводят контроль эффективности противокоррозионной защиты и опасности коррозии, а также регистрацию и анализ причин коррозионных повреждений.

3.8. Работу по ремонту вышедших из строя установок электрохимической защиты квалифицируют как аварийную.

3.9. Сооружения оборудуют контрольно-измерительными пунктами (КИП).

Для контроля коррозионного состояния кабелей связи, проложенных в кабельной канализации, используют смотровые устройства (колодцы).

Критерии опасности коррозии

4.1. Критериями опасности коррозии сооружений являются:

Коррозионная агрессивность среды (грунтов, грунтовых и других вод) по отношению к металлу сооружения (включая биокоррозионную агрессивность грунтов);

Опасное действие блуждающего постоянного и переменного токов.

4.2. Для оценки коррозионной агрессивности грунта по отношению к стали, определяют удельное электрическое сопротивление грунта, измеренное в полевых и лабораторных условиях, и среднюю плотность катодного тока при смещении потенциала на 100мВ отрицательней стационарного потенциала стали в грунте (таблица 1). Если при определении одного из показателей установлена высокая коррозионная агрессивность грунта (а для мелиоративных сооружений - средняя), то другой показатель не определяют.

Методы определения удельного электрического сопротивления грунта и средней плотности катодного тока приведены в приложениях А и Б соответственно.

Примечания

1. Если удельное электрическое сопротивление грунта, измеренное в лабораторных условиях, равно или более 130Ом м, коррозионную агрессивность грунта считают низкой и по средней плотности катодного тока z K не оценивают.

2. Коррозионную агрессивность грунта по отношению к стальной броне кабелей связи, стальным конструкциям НУП оценивают только по удельному электрическому сопротивлению грунта, определяемому в полевых условиях (см. таблицу 1).

3. Коррозионную агрессивность грунта по отношению к стали труб тепловых сетей бесканальной прокладки оценивают по удельному электрическому сопротивлению грунта, определяемому в полевых и лабораторных условиях (см. таблицу 1).

4. Для трубопроводов тепловых сетей, проложенных в каналах, тепловых камерах, смотровых колодцах и т.д., критерием опасности коррозии является наличие воды или грунта в каналах (тепловых камерах, смотровых колодцах и т.д.), когда вода или грунт достигают теплоизоляционной конструкции или поверхности трубопровода.

Таблица 1

Таблица 2

Таблица 3

Таблица 4

Таблица 5

Требования к защитным покрытиям и методы контроля качества

6.1. Конструкции защитных покрытий весьма усиленного и усиленного типов, применяемые для защиты стальных подземных трубопроводов, кроме теплопроводов, приведены в таблице 6; требования к покрытиям - в таблицах 7 и 8 соответственно.

Допускается применять другие конструкции защитных покрытий, обеспечивающие выполнение требований настоящего стандарта.

6.2. При строительстве трубопроводов сварные стыки труб, фасонные элементы (гидрозатворы, конденсатосборники, колена и др.) и места повреждения защитного покрытия изолируют в трассовых условиях теми же материалами, что и трубопроводы, или другими, по своим защитным свойствам отвечающими требованиям, приведенным в таблице 7, не уступающими покрытию линейной части трубы и имеющими адгезию к покрытию линейной части трубопровода.

6.3. При ремонте эксплуатируемых трубопроводов допускается применять покрытия, аналогичные нанесенным на трубопровод ранее, а также на основе термоусаживающихся материалов, полимерно-битумных, полимерно-асмольных и липких полимерных лент, кроме поливинилхлоридных.

Примечание: Для изоляции стыков и ремонта мест повреждений трубопроводов с мастичными битумными покрытиями не допускается применение полиэтиленовых лент.

6.4. Для стальных резервуаров, установленных в грунт или обвалованных грунтом, применяют защитные покрытия весьма усиленного типа конструкции № 5 и 7 по таблице 6.

Таблица 6

Таблица 7

Требования к покрытиям весьма усиленного типа

Наименование показателя 1) Значение Метод испытания Номер покрытия по таблице 6
1. Адгезия к стали, не менее, при температуре Приложение И, метод А
20˚С, Н/см 70,0
50,0
35,0 1 (для трубопроводов диаметром до 820 мм), 9
20,0 3, 4, 5, 6, 10
40˚С, Н/см 35,0
20,0 1, 9
10,0 3, 4, 10
20˚С,Мпа (кг/см 2) 0,5 (5,0) Приложение И, метод Б 7, 8
2. Адгезия в нахлёсте при температуре 20˚С, Н/см, не менее: Приложение И, метод А
Ленты к ленте 7,0 3, 4, 5
35,0
20,0
Обёртки к ленте 5,0
Слоя экструдированного полиолефина к ленте 15,0
3. Адгезия к стали после выдержки в воде в течение 1000 ч при температуре 20ºС, Н/см, не менее 50,0 Приложение К 1 (для трубопроводов диаметром 820 мм и более)
35,0 1, 2 (для трубопроводов диаметром до 820 мм)
30,0
15,0 3, 4
4. Прочность при ударе, не менее, при температуре: По ГОСТ 25812, приложение 5
От минус 15ºС до минус 40ºС, Дж Для всех покрытий(кроме 1, 2, 3,9), для трубопроводов диаметром, мм, не более:
5,0
7,0
9,0
20ºС, Дж/мм толщины покрытия 1, 2, 3, 9 для трубопроводов диаметром, мм:
4,25 До 159
5,0 До 530
6,0 Св. 530
2 для трубопроводов диаметром, мм:
8,0 От 820 до 1020
10,0 От 1220 и более
5. Прочность при разрыве, Мпа, не менее, при температуре 20º 2) 12,0 ГОСТ 11262 1, 2, 9
10,0 ГОСТ 14236 3, 8, 10
6. Площадь отслаивания покрытия при катодной поляризации, см 2 , не более, при температуре: Приложение Л
20ºС 5,0 Для всех покрытий
40ºС 8,0 1, 2, 9
7. Стойкость к растрескиванию под напряжением при температуре 50ºС,ч, не менее По ГОСТ 13518 Для покрытий с толщиной полиолефинового слоя не менее 1 мм: 1, 2, 3, 8, 9, 10
8. Стойкость к воздействию УФ-радиации в потоке 600 кВт·ч/м при температуре 50ºС, ч, не менее По ГОСТ 16337 1, 2, 3, 8
9. Температура хрупкости, ºС, не выше -50ºС По ГОСТ 16783 4, 9
10. Температура хрупкости мастичного слоя (гибкость на стержне)ºС, не более -15ºС По ГОСТ 2678-94 5, 6, 8, 10
11. Переходное электрическое сопротивление покрытия в 3%-ном растворе Na 2 SO 4 при температуре 20ºС, Ом·м 2 , не менее: Приложение М
исходное 10 10 1, 2, 9
10 8 3, 4, 5, 6, 7, 8, 10
Через 100сут. выдержки 10 9 1, 2, 9
10 7 3, 4, 5, 6, 7, 8, 10
12. Переходное электрическое сопротивление покрытия 3) на законченном строительством участках трубопровода (в шурфах) при температуре выше 0˚С, Ом·м 2 , не менее 5·10 5 Приложение М 1, 2, 3, 8, 9, 10
2·10 5 4, 5, 6
5·10 4
13. Диэлектрическая сплошность (отсутствия пробоя при электрическом напряжении), кВ/мм 5,0 Искровой дефектоскоп 1, 2, 3, 4, 5, 6, 8, 9, 10
4,0
14. Сопротивление пенетрации (вдавливанию), мм, не более, при температуре: Приложение Н Для всех покрытий
До 20˚С 0,2
Свыше 20˚С 0,3
15. Водонасыщаемость за 24 ч, %, не более 0,1 По ГОСТ 9812 5, 6, 7, 8, 10
16. Грибостойкость, баллы, не менее По ГОСТ 9.048, ГОСТ 9.049 Для всех типов покрытий весьма усиленного типа.
1) Показатели свойств измеряют при 20˚С, если в НД не оговорены другие условия. 2) Прочность при разрыве комбинированных покрытий, лент и защитных обёрток (в мегапаскалях) относят только к толщине несущей полимерной основы без учета толщины мастичного или каучукового подслоя, при этом прочность при разрыве, отнесённая к общей толщине ленты, должна быть не менее 50 Н/см ширины, а защитной обёртки – не менее 80 Н/см ширины. 3) Предельно допустимое значение переходного электрического сопротивления покрытия на подземных трубопроводах, эксплуатируемых длительное время (более 40 лет), должно составлять не менее 50 Ом·м 2 – для полимерных покрытий.

Таблица 8

Требования к покрытиям усиленного типа

Наименование показателя 1) Значение Метод испытания Номер покрытия по таблице 6
1 Адгезия к стали при температуре 20 °С:
Н/см, не менее 50,0 Приложение И, метод А 11 (для трубопроводов диаметром 820 мм и более)-
35,0 11 (для трубопроводов диаметром до 820 мм)-
20,0
Мпа (кгс/см 2), не менее 0,5 (5,0) Приложение И, метод Б
Балл, не более По ГОСТ 15140 14, 15
2 Адгезия в нахлесте при температуре 20 °С, Н/см, не менее: Приложение И, метод А
ленты к ленте 7,0
слоя экструдированного полиэтилена к ленте 15,0
3 Адгезия к стали после выдержки в воде в течение 1000 ч при температуре 20 °С:
Н/см, не менее 50,0 Приложение К 11 (для трубопроводов диаметром 820 мм и более)
35,0 11 (для трубопроводов диаметром до 820 мм)
15,0
балл, не более По ГОСТ 15140 14, 15
4 Прочность при ударе, не менее, при температуре: По ГОСТ 25812, приложение 5
от минус 15 °С до плюс 40 °С, Дж 2,0
6,0 13 / Ч ^
8,0 15,16
20 °С, Дж/мм толщины покрытия 11, 12 для трубопроводов диаметром:
4.25 до 159 мм
5,0 до 530 мм
6,0 св. 530 мм
5 Прочность при разрыве, МПа, не менее, при температуре 20 °С 2)
12,0 По ГОСТ 11262
10,0 По ГОСТ 14236
6 Площадь отслаивания покрытия при катодной поляризации, см 2 , не более, при температуре: Приложение Л
20°С 4,0 14, 15, 16
5,0 11, 12, 13
40°С 8,0 11, 15, 16
7 Стойкость к растрескиванию под напряжением при температуре По ГОСТ 13518 Для покрытий с толщиной полиолефинового слоя не менее 1 мм:
50°С, ч, не менее 11,12
8 Стойкость к воздействию УФ-радиации в потоке 600 кВт-ч/м при температуре 50 °С, ч, не менее По ГОСТ 16337
11, 12
9 Переходное электрическое сопротивление покрытия в 3 %-ном растворе Na 2 SO 4 при температуре 20 °С, Ом-м 2 , не менее: Приложение М
исходное 10 10
10 8 12, 13, 15, 16
5·10 2
через 100сут выдержки 10 9
10 7 12,13,15,16
3·10 2
10 Переходное электрическое сопротивление покрытия 3) на законченном строительством участке трубопровода (в шурфах) при температуре выше 0°С, Ом·м 2 , не менее 3·10 5 Приложение М 11, 12, 16
1·10 5
5·10 4
11 Диэлектрическая сплошность (отсутствие пробоя при электрическом напряжении), кВ/мм 5,0 Искровой дефектоскоп 11, 12, 16
4,0
2,0
12. Водонасыщаемость за 24 ч, %, не более 0,1 По ГОСТ 9812
13. Грибостойкость, балл, не менее По ГОСТ 9.048, ГОСТ 9.049 Для всех покрытий усиленного типа
1) Показатели свойств измеряют при 20°С, если в НД не оговорены другие условия. 2) Прочность при разрыве комбинированного покрытия, лент и защитных оберток (в мегапаскалях) относят только к толщине несущей полимерной основы без учета толщины мастичного или каучукового подслоя. При этом прочность при разрыве, отнесенная к общей толщине ленты, должна быть не менее 50 Н/см ширины, а защитной обертки - не менее 80 Н/см ширины. 3) Предельно допустимое значение переходного электрического сопротивления покрытия на подземных трубопроводах, эксплуатируемых длительное время (более 40 лет), должно составлять не менее 50 Ом-м 2 для мастичных битумных покрытий и не менее 200 Ом-м 2 - для полимерных покрытий.

6.5. Толщину защитных покрытий контролируют методом неразрушающего контроля с применением толщиномеров и других измерительных приборов:

В базовых и заводских условиях для двухслойных и трехслойных полимерных покрытий на основе экструдированного полиэтилена, полипропилена; комбинированного на основе полиэтиленовой ленты и экструдированного полиэтилена; ленточного полимерного и мастичного покрытий - на каждой десятой трубе одной партии не менее чем в четырёх точках по окружности трубы и в местах, вызывающих сомнение;

В трассовых условиях для мастичных покрытий - на 10% сварных стыков труб, изолируемых вручную, в четырех точках по окружности трубы;

На резервуарах для мастичных покрытий - в одной точке на каждом квадратном метре поверхности, а в местах перегибов изоляционных покрытий - через 1м по длине окружности,

6.6. Адгезию защитных покрытий к стали контролируют с применением адгезиметров:

В базовых и заводских условиях - через каждые 100м или на каждой десятой трубе в партии;

В трассовых условиях - на 10 % сварных стыков труб, изолированных вручную;

На резервуарах - не менее чем в двух точках по окружности,

Для мастичных покрытий допускается определять адгезию методом выреза равностороннего треугольника с длиной стороны не менее 4,0см с последующим отслаиванием покрытия от вершины угла надреза. Адгезия считается удовлетворительной, если при отслаивании новых покрытий более 50% площади отслаиваемой мастики остается на металле трубы. Поврежденное в процессе проверки адгезии покрытие ремонтируют в соответствии с НД.

6.7. Сплошность покрытий труб после окончания процесса изоляции в базовых и заводских условиях контролируют по всей поверхности искровым дефектоскопом при напряжении 4,0 или 5,0кВ на 1мм толщины покрытия (в зависимости от материала покрытия), а для силикатно-эмалевого - 2кВ на 1мм толщины, а также на трассе перед опусканием трубопровода в траншею и после изоляции резервуаров.

6.8. Дефектные места, а также сквозные повреждения защитного покрытия, выявленные во время проверки его качества, исправляют до засыпки трубопровода. При ремонте обеспечивают однотипность, монолитность и сплошность защитного покрытия; после исправления отремонтированные места подлежат вторичной проверке.

6.9. После засыпки трубопровода защитное покрытие проверяют на отсутствие внешних повреждений, вызывающих непосредственный электрический контакт между металлом труб и грунтом, с помощью приборов для обнаружения мест повреждения изоляции.

6.10. Для защиты трубопроводов тепловых сетей от наружной коррозии применяют защитные покрытия, конструкции и условия применения которых приведены в приложении П.

Требования к электрохимической защите

7.1. Требования к электрохимической защите при отсутствии опасного влияния постоянных блуждающих и переменных токов

7.1.1. Катодную поляризацию сооружений (кроме трубопроводов, транспортирующих среды, нагретые свыше 20 °С) осуществляют таким образом, чтобы поляризационные потенциалы металла относительно насыщенного медно-сульфатного электрода сравнения находились между минимальным и максимальным (по абсолютному значению) значениями в соответствии с таблицей 9.

Измерение поляризационных потенциалов проводят в соответствии с приложением Р.

Таблица 9

Требования к электрохимической защите при наличии опасного влияния постоянных блуждающих токов

7.2.1. Защиту сооружений от опасного влияния постоянных блуждающих токов осуществляют так, чтобы обеспечивалось отсутствие на сооружении анодных и знакопеременных зон.

Допускается суммарная продолжительность положительных смещений потенциала относительно стационарного потенциала не более 4 мин в сутки.

Определение смещений потенциала (разность между измеренным потенциалом сооружения и стационарным потенциалом) проводят в соответствии с приложением Г.

Загрузка...