Автомобильный портал - ZadonskVokzal

Шасси с передней опорой. Авиационные жидкостно-газовые амортизаторы Стойка в ферме

На самолете Як-18Т установлены главные стойки шасси одностоечного типа ферменно-балочной конструкции с боковым и задним подкосами и с непосредственным креплением колеса к штоку амортизатора. Главные стойки шасси (рис. 45, 46) установлены в центроплане и состоят из следующих элементов.

Стойка 1 - основной силовой элемент главной ноги, передающий нагрузки от колеса к самолету. Она испытывает нагрузки от сил и моментов по всем трем осям. Как и в конструкции передней ноги шасси, стойка главной ноги представляет собой одно целое с амортизатором.

Складывающийся подкос 2 (боковой) воспринимает усилия, действующие на стойку от боковой силы, приложенной к колесу, и увеличивает жесткость конструкции стойки в боковом направлении. Состоит из верхнего и нижнего звеньев. Жесткий подкос (см. рис. 45) 4 (задний) воспринимает силы, действующие на стойку в плоскости колеса, и увеличивает жесткость конструкции стойки в продольном направлении.

Цилиндр-подъемник 6 и замок убранного положения 8 выполняют те же функции, что и аналогичные элементы конструкции передней ноги шасси.

Ось 5 и шкворень 7 служат для крепления и фиксации амортизационной стойки главной ноги шасси в кронштейнах, находящихся соответственно на заднем лонжероне и диафрагме центроплана; изготовлены из поковки материала 30ХГСА.

Щиток 9 служит для частичного закрытия ниши при убранном положении главной ноги. Колесо 10 - опора главной ноги шасси, тормозное. Для сигнализации положения главной ноги на ней смонтирован механический указатель 3.

Главные ноги шасси в убранном положении удерживаются механическими замками, в выпущенном - шариковыми замками цилиндров - подъемников и боковыми складывающимися подкосами.

Амортизационная стойка главной ноги шасси (рис. 47) состоит из стального стакана (из материала 30ХГСА), стального штока с полуосью для крепления колеса, шлиц-шарнира, фиксирующего шток от поворота вокруг вертикальной оси, и деталей амортизации. В верхней части стакан 4 имеет проушины для оси 14 и шкворня 2, с помощью которых главная стойка крепится к центроплану, а также кронштейн 1 для крепления к стойке ушкового болта штока цилиндра-подъемника.

В средней части стакана, представляющей собой толстостенную стальную трубу, расположены верхний зарядный штуцер 3, узлы крепления тяг щитка и проушины крепления жесткого и складывающегося подкосов. В нижней своей части стакан имеет проушину для крепления верхнего звена шлиц-шарнира и узла подвески стойки на замок убранного положения.

Узел подвески представляет собой проушину с вставленным в ее отверстия болтом 12 с внутренней распорной и внешней 11 стальными втулками и двумя шайбами 10. Шайбы и лапы проушин имеют рифленую поверхность для регулировки положения болта с втулкой. На болт наворачивается гайка, контрящаяся шплинтом.

Внутри стакана в нижней его части с помощью гайки 26, законтренной винтом, установлена неподвижная букса 23 с уплотнениями, а с помощью стопорного кольца 28 в гайку установлен обтюратор 27 с сальником 25.

Шток амортизационной стойки полый и выполнен из материала 30ХГСА. К нижнему концу штока приварен узел с полуосью для крепления колеса с нижним зарядным штуцером и проушиной крепления нижнего звена шлиц-шарнира. В верхней части с помощью гайки 20, законтренной шплинтом 21, закреплен пакет деталей амортизации, движущийся вместе со штоком и состоящий из подвижной буксы 16, разрезного кольца 17, клапана 18, выполненного в виде стального кольца с тремя отверстиями Æ 1,4 мм для протекания жидкости, втулок 22 и 15. Подвижная букса 16 и втулка 22 выполнены из материала БРАЖМЦ.

С помощью гайки 20 на штоке установлен поршень 24, который имеет возможность перемещаться внутри штока (ход 120±3 мм) и делит полость амортизационной стойки на две изолированные друг от друга камеры Д и Г.

Через нижний штуцер камера Г заряжается азотом до давления 65 ±1 кгс/см2, через гнездо верхнего штуцера камера Д заполняется маслом АМГ - 10, а через штуцер заряжается азотом до 24 ±1 кгс/см2. По конструкции штуцеры подобны штуцерам передней амортизационной стойки. Герметичность главной амортизационной стойки обеспечивается применением уплотнений, состоящих из фторопластовых шайб и резиновых колец, расположенных в кольцевых выточках на внутренней и внешней поверхности неподвижной буксы и внешней поверхности поршня. Работа амортизационной стойки главной ноги шасси аналогична работе передней амортизационной стойки.

Диаграмма обжатия главной амортстойки показана на рис. 48.

Работа амортизации на прямом ходе представлена на диаграмме в виде кривой abc. Как и на диаграмме (см. рис. 39) обжатия передней стойки, кривая abc отчетливо распадается на два участка: ab - показывает работу амортизации при нормальной посадке (работа верхней камеры Д амортизационной стоики); bc - работу нижней камеры Г. Последняя вступает в работу при поглощении энергии грубой посадки или преодолении самолетом высокого препятствия при движении по аэродрому. Доля работы, затрачиваемой на преодоление гидравлических сопротивлении жидкости, в общем объеме работы, поглощенной амортизатором, при прямом ходе несколько выше, чем при обжатии передней стоики, что видно на участке bc диаграммы, характеризующей работу нижней камеры амортизационной стойки. Амортизация на обратном ходе осуществляется в основном торможением жидкости в клапане 18, который прижимается к буксе 16, и жидкость вытесняется из полости между стаканом 4 и втулкой 15 только через отверстия в клапане и буксе.

Кривая усилий ned при движении штока вниз, изображенная на диаграмме обжатия главной стойки, состоит из двух участков, характеризующих работу верхней и нижней камер амортизатора.

Складывающийся и жесткий подкосы. Складывающийся подкос 2 (см рис. 45) служит для фиксации главной ноги шасси в выпущенном положении, передает усилия с амортизационной стоики на узел центроплана и совместно с цилиндром-подъемником входит в механизм уборки и выпуска главной ноги шасси.

Подкос состоит из верхнего и нижнего штампованных из материала 30ХГСА звеньев, соединенных между собой болтом с гайкой.

Нижнее звено подкоса соединено с амортизационной стойкой, верхнее - с кронштейном на стенке ниши шасси. Под соединительный болт в нижнем звене подкоса установлен шаровой вкладыш. Гайки соединительных болтов верхнего и нижнего звеньев контрятся шплинтами.

Верхнее звено подкоса шарнирно соединено с кронштейном на стенке ниши шасси и с цилиндром-подъемником. Соединение с цилиндром - подъемником осуществляется с помощью специального ушкового болта, вращающегося в бронзовых втулках, впрессованных в бобышку верхнего звена подкоса. С помощью болта и гайки, законтренной шплинтом, ушковый болт подкоса соединен с ушковым болтом, ввернутым в шток цилиндра - подъемника.

В кронштейне верхнего звена подкоса установлен концевой выключатель АМ800К, а в кронштейн нижнего звена ввернут нажимной регулируемый винт. При уборке шасси подкос складывается, нажимной винт освобождает от нажатия шток концевого выключателя и на табло сигнализации шасси в кабине гаснет зеленая сигнальная лампа выпущенного положения главной ноги шасси.

В выпущенном положении главной ноги звенья складывающегося подкоса устанавливаются в распор и фиксируются в этом положении цилиндром-подъемником, шток которого запирается шариковым замком, что препятствует складыванию подкоса от внешних боковых усилий, действующих на ногу шасси. Нажимной винт нижнего звена подкоса нажимает на шток концевого выключателя, и на сигнальном табло шасси горит зеленая сигнальная лампа выпущенного положения главной ноги. Обратная стрелка прогиба подкоса вниз от прямой – 5 ± 0, 2 мм.

Жесткий подкос 4 (см. рис. 45), соединяющий ось со стойкой, представляет собой толстостенную стальную трубку диаметром 25X2, в которую вварены вилка и ухо. С помощью вилки подкос крепится к оси, с помощью уха - к стойке. Крепление подкоса осуществляется болтовыми соединениями. Гайки болтов контрятся шплинтами.

Цилиндр-подъемник уборки-выпуска главной стойки шасси по конструкции аналогичен цилиндру - подъемнику передней стойки. Ухо цилиндра-подъемника крепится к ушковому болту, установленному на верхнем звене подкоса, а шток - ввернутым в него ушковым болтом к кронштейну (см. рис 45), установленному на болтах крепления шкворня к стакану амортизационной стойки. Отличие в работе цилиндра - подъемника главной ноги от цилиндра-подъемника передней ноги при выпуске шасси состоит в том, что фиксация главной ноги в выпущенном положении и закрытие шарикового замка обеспечиваются при штоке, втянутом в корпус цилиндра.

Щиток главной стойки шасси. Щиток 9 (см. рис. 45) служит для частичного закрытия ниши шасси при убранном положении главной ноги. Он состоит из обшивки и приваренной к ней штампованной из материала Д16 жесткости. Крепление штока к нижней обшивке центроплана осуществлено с помощью шомпольной петли, а к амортизационной стойке - с помощью двух регулируемых по длине стальных тяг. Тяги соединяют кронштейны на щитке с узлами, приваренными к стакану амортизационной стойки. Гайки болтов, соединяющих тяги с кронштейнами на щитке и болты соединения тяг со стаканом амортизационной стойки, контрятся шплинтами.

Замок убранного положения главной стойки шасси 8 (см. рис. 45) крепится четырьмя болтами с анкерными гайками к стенке ниши главной ноги шасси. По конструкции элементов и принципу работы замок аналогичен замку убранного положения передней ноги шасси. При открытом замке на сигнальном табло шасси в кабине красная сигнальная лампа убранного положения главных ног шасси гаснет.

Колесо. На каждой амортизационной стойке главных ног шасси установлено по тормозному колесу К141/Т141.

Тормозное колесо (рис. 49) состоит из колеса и камерного тормоза. При установке на самолет тормозное колесо собирается совместно с пневматикой размером 500x150 мм. Колесо состоит из барабана 3, несущего специальные узлы конструкции, и представляет собой отливку из магниевого сплава МЛ4 или МЛ5. Во внутренней полости барабана размещена тормозная рубашка 10, в которой размещен камерный тормоз.

Реборда 2 выполнена съемной для облегчения монтажа пневматика 1 на колесо. В собранном колесе реборда удерживается в осевом направлении двумя контрящими полукольцами 9, а от проворачивания - втулками, установленными в пазы реборды и барабана.

Вращение колеса осуществляется на конических радиально - упорных роликоподшипниках 5. Их наружные кольца запрессованы в гнездо ступицы барабана. Внутренние обоймы с роликами монтируются на полуоси 14 штока амортизационной стойки и затягиваются гайкой 6. С внешних сторон подшипники защищены от засорения и вытекания смазки колпачком и войлочным кольцом обтюратора. От попадания грязи во внутренние полости колесо закрыто щитком 7.

Камерный тормоз, размещенный в тормозной рубашке 10, состоит из корпуса тормоза 12, двенадцати колодок 15, тормозной камеры 17, штуцера 18 с фланцем, возвратных пружин 16, обтекателя 11, а также деталей крепления. Корпус 12 отлит из магниевого сплава МЛ4 или МЛ5. Шестью болтами 13 корпус (а с ним и весь тормоз) крепится к фланцу полуоси штока амортизационной стойки. Колодки 15 армированные - фрикционная пластмасса спрессована совместно с металлическим каркасом. Наружная поверхность колодок образует с поверхностью рубашки 10 фрикционную пару. Колодки имеют возможность перемещаться только в радиальном направлении под давлением сжатого воздуха, подведенного в тормозную камеру 17 через штуцер и угольник 19.

Возвратные пружины 16 типа ленточных рессор проходят через торцевые пазы в колодках и отводят колодки от рубашки после сброса давления из тормозной камеры.

В обтекателе 11 имеются четыре отверстия, закрытые специальными крышками и служащие для контроля за износом колодок в эксплуатации.

При нажатии на тормозные рычаги, установленные на штурвалах управления, воздух поступает в тормозную магистраль и дифференциалом ПУ-8 (У138) в зависимости от положения педалей распределяется в тормозную камеру левого или правого колеса. Давление сжатого воздуха, подведенного в тормозную камеру, создает распорное усилие, перемещающее колодки в радиальном направлении. Колодки, перемещаясь, преодолевают усилие возвратных пружин 16 и прижимаются к тормозной рубашке 10, предварительно выбрав зазор между колодками и рубашкой. При их соприкосновении возникают силы трения, создающие тормозной момент. При сбросе давления из тормозной камеры возвратные пружины отжимают колодки от рубашки в исходное положение. Между колодками тормоза и рубашкой колеса устанавливается зазор, обеспечивающий свободное вращение колеса на полуоси.

Механический указатель положения главной стойки шасси (см, рис. 45) состоит из трех основных элементов: серьги, вилки и самого указателя 3. Штампованная из материала АК-6 серьга смонтирована на болте крепления жесткого подкоса 4 к оси 5 навески амортизационной стойки. С помощью болта с гайкой, законтренной шплинтом, серьга соединена со стальной вилкой, которая вворачивается непосредственно в указатель.

При выпущенном положении шасси указатель выходит за обводы центроплана на расстоянии 70 мм перед задним лонжероном. Отверстие в обшивке центроплана для выхода указателя окантовано фторопластовым пистоном. При уборке шасси ось 5 вращается в кронштейне крепления главной ноги, а вместе с ней изменяет свое положение и серьга. При этом указатель втягивается внутрь центроплана, и пилот получает информацию о нахождении стоек в убранном положении.

Консультация специалиста

(Скирко Олег, выдержки из статьи для журнала"Авиация общего назначения")

Вопрос: Каким должно быть шасси для СЛА, исходя из специфики его использования?

Ответ: Учитывая то, что СЛА это летательный аппарат:

  • предназначенный для любительских полетов зачастую с неподготовленных площадок
  • часто оснащеный двигателями, не рекомендованными для применения на воздушных судах,
  • шасси у него должно быть с повышенными требованиями к восприятию взлетно-посадочных нагрузок, к поглощению ударов и устойчивости против козления, а также оснащено надежными тормозными устройствами.

    Занимаясь проектированием, постройкой и эксплуатацией различного рода летательных аппаратов мы регулярно сталкивались с проблемой надежных элементов для шасси.

    Прочно обосновавшаяся в конструкции шасси СЛА рессора - это достаточно элегантное, аэродинамически чистое решение. Привлекает также ее видимая простота и кажущаяся дешевизна. Но является ли рессора именно тем элементом, который поможет непрофессиональному пилоту не поломать самолет в случае вероятной ошибки при выполнении посадки, или опытному пилоту сесть с отказавшим двигателем на ограниченную площадку с неопределённым рельефом? При отсутствии элемента, поглощающего энергию удара, рессора остается просто пружиной с практически линейной зависимостью деформации от нагрузки. С ростом нагрузки рессора деформируется, пока не поломается, а если удар оказался не очень сильным, то накопленная энергия передается обратно самолету, отсюда большая вероятность козления.

    Автомобильная амортизационная стойка как альтернатива рессоре, в некоторых случаях выглядит лучше, но учитывая то, что автомобильные амортизаторы изначально созданы для автомобилей с их нагрузками, спецификой работы, то практически не возможно подобрать подходящий по параметрам амортизатор, а присутствие пружины делает шасси достаточно тяжелым. Ведь нормальный стандартный автомобиль или мотоцикл не рассчитывается на удар о землю с вертикальной скоростью 3-4м/с. А работа гидравлики направлена на то, чтобы обеспечить в первую очередь плавность движения.

    Единственный выход- это применение традиционного авиационного решения на базе жидкостно-газовых (гидропневматических) амортизаторов. Это является аксиомой, что гидропневматик обладает максимальной способностью поглощать энергию удара при посадке , обеспечивая при этом наибольшую весовую эффективность. Существует большое разнообразие конструктивных исполнений. Основываясь на этом, можно выбрать максимально дешевый амортизатор, с достаточным ресурсом, с возможностью эксплуатировать его в обычных условиях без наличия специального оборудования для подкачки.

    В большой авиации под каждый самолет проектируется свой амортизатор. Это объясняется достаточно высокими требованиями к элементам шасси и к самолету в целом со стороны норм летной годности.

    В случае же со СЛА ситуация выглядит гораздо проще. Диапазон взлетных весов летательных аппаратов колеблется около 450кг., схемы шасси не дают большой разницы в нагрузках на амортизационную стойку. В связи с этим возможно разработать универсальный амортизатор , который можно применить на любом летательном аппарате, что и было сделано нами.

    Выполнив необходимые расчеты и проверив их на опытных стендах мы пришли к выводу, что варьируя с объемом масла и давлением закачки при одном и том же железе, можно получить диаграмму обжатия удовлетворяющую широкому диапазону технических требований. А проводя испытания на специально созданном дропстенде мы подобрали конструкцию клапана обеспечивающую удар об землю без отскока и в тоже время с достаточно быстрым возвратом на обратном ходе.

    Следующим шагом было освоение производства шлифованных штоков, поиска надежных высоко ресурсных уплотнений. В результате работы над решением всех этих проблем мы научились создавать амортизаторы под конкретные технические условия заказчика , точно соблюдая заданные параметры.

    Исходными данными для проектирования являются:

  • величина обжатия при стояночной нагрузке
  • нагрузка при полном обжатии, которая определятся исходя из максимальной посадочной перегрузки и кинематики шассие
  • рабочий ход
  • После создания универсального амортизатора для СЛА, используя стандартные конструктивные схемы, было освоено производство амортизаторов практически на все случаи жизни. Это амортизаторы сжатия и растяжения, скомпонованные штоком вверх и штоком вниз, со стояночной нагрузкой на амортизационную стойку от 80 до 1000 кг.

    Давление закачки в общем случае не превышает 20атм., что делает возможным подкачку амортизатора ручным насосом для амортизаторов горного велосипеда. Применяемые полиуретановые уплотнения и высоко ресурсные пары трения делают срок службы амортизатора превосходящим ресурс планера самолета.

    Один из вариантов этого амортизатора, созданный для мотоцикла, проехал в условиях наших дорог более 5000 км, что соответствует 25 000 полетам. При этом следов износа, препятствующих нормальной работе, замечено не было.

    В настоящее время эти амортизаторы ставят в разных частях Земного Шара на носовые вилки мотодельтапланов и носовые стойки самолетов, на основные стойки мотопарапланов, мотодельтапланов, автожиров и самолетов. Следует заметить, что на летательных аппаратах с повышенным риском приземления с высокой вертикальной скоростью, таких как мотопараплан и автожир, применение гидропневматиков особенно оправдано. Также обоснованным становится применение гидропневматиков при росте взлетного веса в связи с установкой тяжелых силовых установок на базе мощных автомобильных двигателей и двигателей ROTAX-912(914).

    Предлагаю авиамоделистам вариант изготовления стойки шасси для ретрактов без станочного оборудования.Стойки подобного типа стоят доволно дорого.На Алиэкспресс подобные находил за 600руб за пару на ПФ еще дороже. Амортизатор для стойки шасси 5 мм, 1 шт.
    Товар http://www.сайт/product/6382/

    В строительном магазине (Максидом, ОБИ,Касторама и т.п магазинах) приобрел отечественный алюминевый прокат стержень диаметром 6мм и трубку Ф8хФ6 мм метровой длины по цене 75р за каждое изделие.
    Так как они идеально сопрягались по диаметрам, решил изготовить из них стойки, остатки проката вполне можно применить для стыковки крыльев, других стоек и т.п.
    Единственное затруднение может вызвать только наличие пружин диаметром 5-5,5мм, ну думаю в хозяйстве моделиста всегда подобное найдется.Длину и жёсткость пружины в трубке регулируем подбором длины проставки из стеклотекстолита. Процесс и размеры описывать не буду,каждый длину стоек сделает под конкретную свою модель. В качестве стержней для стыковки с ретрактами можно использовать обломки сверла,вала двигателя или стержни со старых сидиромов. В местах крепления необходимо сделать плоские лыски от проворота и крепеж ставить на клей или краску для предотвращения от самовывинчивания при вибрации.

    Летательного аппарата, воспринимающий и передающий на конструкцию планёра концентрированные статические и динамические нагрузки, возникающие при взлёте и особенно при посадке летательного аппарата. Основные элементы С. ш. : амортизатор шасси (см. ), при балочной схеме тележки шасси он встроен в С. ш. , при рычажной — вынесен; ; складывающийся подкос, воспринимающий нагрузку от лотовых сил (уменьшающийся по длине при убирании С. ш. ); раскосы — стержни, расположенные по диагонали шарнирного многоугольника, образованного С. ш. и подкосом, и обеспечивающие геометрическую неизменяемость этого многоугольника; траверса — элемент крепления стойки к крылу или фюзеляжу (при подкосной С. ш. связь с летательным аппаратом осуществляется с помощью подкосов); механизм ориентации С. ш. , предназначенный для разворота стойки при её убирании или выпуске; узел у нижнего основания С. ш. для крепления оси колёс или тележки к С. ш. ; замки, обеспечивающие фиксацию С. ш. в выпущенном и убранном положениях; цилиндры механизма выпуска и убирания шасси. Консольная конструкция С. ш. , отличающаяся большой жёсткостью, исключает необходимость заднего подкоса. При рычажной и полурычажной схемах к С. ш. относятся также рычаги, на которых крепятся колёса. Передняя С. ш. включает цилиндры демпфера шимми летательного аппарата — устройство, защищающее летательный аппарат от вибрации колёс, и рулёжное устройство (с гидроцилиндром), предназначенное для поворота передней С. ш. при движении (рулении) летательного аппарата по земле, разбеге перед взлётом и пробеге после посадки.

    В начальный период развития авиации С. ш. при полёте самолёта находились в воздушном потоке и являлись одним из основных источников аэродинамического сопротивления. Для его снижения сначала стали устанавливать обтекатели на колёса и С. ш. , а в 30-х гг. при создании скоростных самолётов началось широкое применение убирающегося шасси, хотя это и связано с увеличением массы и усложнением конструкции шасси.

    Кинематика убирания С. ш. весьма разнообразна. На большинстве отечественных и зарубежных пассажирских самолётов они убираются вдоль по размаху крыла в сторону фюзеляжа; на самолётах семейства , как правило, — назад по потоку в специальные обтекатели; при этом тележка шасси поворачивается на 180° так, что передние колёса оказываются сзади. Такая компоновка предельно уменьшает размеры обтекателя.

    В. М. Шейнин.


    Энциклопедия «Авиация». - М.: Большая Российская Энциклопедия . Свищёв Г. Г. . 1998 .

    Смотреть что такое "стойка шасси" в других словарях:

      Стойка шасси - основной силовой элемент шасси летательного аппарата, воспринимающий и передающий на конструкцию планёра концентрированные статические и динамические нагрузки, возникающие при взлёте и особенно при посадке летательного аппарата. Основные элементы … Энциклопедия техники

      Стойка шасси — основной силовой элемент шасси летательного аппарата, воспринимающий и передающий на конструкцию планёра концентрированные статические и динамические нагрузки, возникающие при взлёте и особенно при посадке летательного… … Энциклопедия «Авиация»

      подкосная стойка шасси самолета (вертолета) - подкосная стойка Стойка шасси самолета (вертолета), связанная с самолетом (вертолетом) подкосами. [ГОСТ 21891 76] Тематики шасси самолетов и вертолетов Синонимы подкосная стойка … Справочник технического переводчика

      шасси - 1) автомобиля – собранный комплект агрегатов трансмиссии, ходовой части и механизмов управления, т. е. автомобиль без двигателя и кузова. Шасси ещё не способно двигаться самостоятельно, но его можно катать на колёсах. В литературе часто… … Энциклопедия техники

      Рис. 1. Схемы шасси. шасси (франц. châssis, от лат. capsa — ящик, вместилище) — совокупность опор летательного аппарата, необходимых для стоянки и передвижения на земле, для разбега при взлёте, а также пробега и торможения при посадке.… … Энциклопедия «Авиация»

    Шасси

    На всех самолётах семейства RRJ используется убирающиеся шасси, с передней управляемой опорой и тормозными основными опорами. Передние опоры одинаковы на всех модификациях.

    Основные опоры могут иметь одно из двух исполнений:

    • в виде четырехколесной тележки, или
    • в виде двухколесной опоры.

    Выбор типа (исполнения) основной опоры определяет Заказчик. Узлы навески различных опор унифицированы, а размер ниши шасси выбран из условия размещения в них любой опоры.

    Схема расположения опор
    Схемы разворотов при рулении
    Кинематическая схема передней опоры показана на Рис. 1.3-10.

    Основной двухколесной опоры – на Рис. 1.3-11.
    Основной опоры с четырехколесной тележкой на Рис. 1.3-12.

    1.3.8.1. Передняя опора

    Передняя опора шасси состоит из:

    • амортизационной стойки,
    • складывающегося подкоса,
    • механизма распора,
    • двух запирающих пружин,
    • цилиндра подлома механизма распора,
    • цилиндра уборки-выпуска,
    • двух спаренных нетормозных колес с шинами.

    Опора посредством гидроцилиндра убирается вперед по направлению полёта в нишу, расположенную в носовой части фюзеляжа, и удерживается в убранном положении гидромеханическим замком. Ниша закрывается двумя парами створок, приводимыми в действие от стойки передней опоры с помощью механизмов управления створками. При выпущенной опоре передняя пара створок закрыта. Уборка и выпуск опоры производится от гидросистемы самолёта.

    Аварийный выпуск обеспечивается механическим открытием замка убранного положения опоры и замков закрытого положения створок и осуществляется под действием собственного веса опоры и пружин механизма распора.

    Колёса передней опоры управляемые и могут разворачиваться под действием механизма разворота колёс (режим управления) или под действием внешней силы (режим самоориентации). При уборке опоры колёса устанавливаются в нейтральное положение. Передние опоры всёх самолетов семейства RRJ унифицированы.

    1.3.8.2. Основная опора

    – опора с двумя колесами, размещенными в виде «спарки».

    Каждая основная опора шасси включает:

    • стойку амортизационную телескопического типа;
    • подкос складывающийся передний;
    • подкос складывающий задний;
    • устройство запирания подкоса складывающегося переднего от самопроизвольного складывания при выпущенной опоре — распор с двумя пружинами;
    • устройство запирания подкоса складывающегося заднего от самопроизвольного складывания при выпущенной опоре — распор с двумя пружинами;
    • гидроцилиндр уборки-выпуска;
    • гидроцилиндр распора;
    • гидроцилиндр распора.

    Стойка крепится к конструкции крыла при помощи полуосей размещенных в траверсе. Подкосы, фиксирующие опору в выпущенном положении, крепятся к конструкции фюзеляжа шарнирно. Распоры с пружинами являются замками подкосов и, в свою очередь замками выпущенного положения опоры.

    Гидроцилиндр каждого распора служит для преодоления эксцентриситета звеньев распора и вывода его из положения кинематического замка при уборке опоры.

    В убранном положении опора фиксируется гидромеханическим замком.

    Штатные уборка и выпуск осуществляются цилиндром уборки-выпуска от гидросистемы самолета.

    Аварийный выпуск происходит под действием собственного веса опоры после механического открытия замков убранного положения.

    Фиксация выпущенного положения производится под действием пружин распора. Опора оснащена двумя тормозными колёсами, размещёнными на одной общей оси, или колёсами, размещёнными попарно на двух осях.

    Каждая тележка фиксируется двумя стабилизирующими пневмогидравлическими амортизаторами. Воздействие тормозного момента от колёс на тележку воспринимается четырьмя тормозными тягами.

    Основные опоры всех самолётов семейства RRJ унифицированы. Амортизационная стойка обеспечивает восприятие нагрузок при разбегах и пробегах самолёта, поглощение энергии посадочных ударов, буксировку и швартовку самолета.

    Стойка телескопического типа, имеет двухкамерный пневмогидравлический амортизатор с демпфированием на прямом и обратном ходе штока. Максимальный ход штока – 400 мм (15.75 in).

    Стойка конструктивно состоит из:

    • цилиндра амортизатора;
    • штока амортизатора;
    • траверсы;
    • шлиц-шарнира;

    Траверса при помощи двух полуосей шарнирно закреплена в нише основной опоры. На цилиндре амортизатора расположен узел крепления складывающегося подкоса. На подкосе расположен механизм распора с двумя пружинами и цилиндр распора. Цилиндр уборки-выпуска крепится к траверсе и каркасу.

    Шлиц-шарнир соединяет цилиндр и шток амортстойки и фиксирует их от взаимного проворота. В нижней части штока имеется узел для установки спаренных колёс или четырехколёсной тележки. Основные двухколёсные опоры оборудованы тормозными колесами либо фирмы GOODRICH с шинами Н40х14,0-R19 (согласно сертификату EASA - http://www.easa.europa.eu/certification/type-certificates/docs/aircraft/EASA-TCDS-A.176_%28IM%29_Sukhoi_RRJ--95-01-03022012.pdf , стр. 12 - шины 40x14,5-R19 24PR 225 MPH), либо фирмы MICHELIN. Основные четырёхколёсные опоры оборудованы тормозными колёсами либо фирмы GOODRICH с шинами H30х9,5-R16, либо фирмы MICHELIN. Давление зарядки шин H40х14,0-R19, H30x9,5-R16 для различных самолетов семейства составляет: …

    Конструкция 2-х и 4-х тележечного шасси разработана фирмой «Гражданские Самолеты Сухого».

    RRJ0000-RP-100-041_Rev.B 1-34

    Фото: Основная и передняя опоры самолёта SSJ100 | Интернет

    Вопрос к уважаемым знатокам. Как вы считаете, почему до сих пор не используется электромеханическая система уборки-выпуска шасси. Казалось бы, задача вполне выполнимая - масса шасси постоянная и не такая уж большая, усилие уборки всегда одинаковое, требования к скорости уборки-выпуска - тоже не космические. Электромеханические домкраты существуют в природе, и вполне справляются с весами в 2-3 тонны (а шасси, наверное, легче), при достаточно малом весе, размерах, электропотреблении. Благодаря такой системе удалось бы существенно упростить гидравлическую систему самолета и повысить его надежность в целом. Может быть, даже уменьшить вес при этом (это нужно считать, конечно). Тем не менее, никто из авиа производителей так не делает. Не сомневаюсь, что они все умные, и, наверное, уж точно лучше меня знают, что к чему:). Но все же, почему так не делают до сих пор?

    Гидравлическая система в самолете сложна совсем не потому, что ей нужно убирать/выпускать шасси..
    Основная задача этих систем- приведение в действие системы управления самолетом - рулей направления и высоты, и элеронов, воздушного тормоза и щитков..
    И если сделать привод уборки/выпуска шасси электромеханическим, то упростить гидросистему совершенно не удастся..
    другое дело, что счас стараются перейти на смешанные системы приведения, где электричество используется в качестве резервной системы…
    Но к шасси то это зачем?

    На мой взгляд, есть несколько очевидных фактов, почему гидросистема упростится:
    1) Исчезнут гидроцилиндры уборки-выпуска шасси, связанные с ними клапана и гибкие шланги высокого давления. Причем эти шланги - источник потенциального отказа системы.
    2) В гидросистеме не станет больше потребителей, требующих больших расходов гидрожидкости. Все рулевые поверхности требуют достаточно небольших расходов, а уборка-выпуск шасси - это как стресс для гидросистемы - объемы цилиндров сравнительно большие, жидкости нужно прокачивать много и быстро. В связи с этим появится возможность уменьшить объемы гидробаков, оптимизировать систему в целом.

    Далее мои предположения, но мне кажется, что это тоже важные вещи:
    Возможно, в результате появится возможность исключить из гидросистемы дублирующие гидронасосы переменного тока ACMP1 и ACMP3. Сейчас в SSJ они в нормальной ситуации включаются в дополнение к основным только в момент уборки-выпуска шасси. Я предполагаю, что это сделано из-за нехватки производительности основных насосов - они рассчитаны на объемы, необходимые для рулевых поверхностей (небольшие объемы), а когда требуется большая производительность, их не хватает и в добавку включаются электро-насосы. Исключение этих насосов из системы - это еще одна возможность упрощения гидросистемы и уменьшения ее веса.

    Ну а раз вы затронули тему рулевых поверхностей - давно меня мучает вопрос, не у кого спросить:). Везде в интернете пишут, что гидравлика до сих пор используется для привода рулевых поверхностей потому, что, дескать, существующие на настоящий момент электроприводы не в состоянии обеспечить потребные усилия и скорость перемещения рулевых поверхностей. Но вот есть пример из практики - ИЛ-62, надежная, проверенная машина, работает в том же диапазоне скоростей и высот, что и существующие гражданские самолеты. Рулевые поверхности у него на всех режимах полета перемещаются посредством мускульной силы пилотов:). Достигнуто это за счет тщательной проработки аэродинамической компенсации рулевых поверхностей. Если при должном подходе хватает мускульной силы пилотов, то это означает, что любые электроприводы могут тоже с этим справиться. Очень странно мне все это - почему нельзя использовать этот опыт для создания подобной схемы с электроприводами? Причем для их работы потребуется совсем небольшая электрическая мощность, а сами приводы из-за небольших потребных нагрузок могут быть компактными и легкими. Очень было бы интересно послушать мнения знающих людей - почему так не делают сейчас?

    Ну, я конечно "валенок" в механике и авиации - но как-то и в автомобильном транспорте больше ГУР используют, хотя думаю требований по безопасности в автомобильной промышленности поменьше, чем в авиации. В авиации думаю, также немало важен фактор объема - гидроусилитель влезет в тонкое крыло, электроусилитель с "натягом" - хотя, повторюсь - это мнение полного "профана"…

    1) Да, исчезнут..А что будет взамен их, Вы представление имеете? Электромоторы и редуктороры весят ого-го!! Кроме того, над к ним тянуть СИЛОВОЙ кабель и защишать его.
    А гидравлические магистрали- все равно уже там, проходят аккуратненько мимо гидроцилиндров шасси:-) Что мы выигрываем?
    И по соотношению усилие/вес гидравлика пока еще весьма на уровне. Это связано с тем, что даже моторы имеют не только тепловой предел, но и ограничены по насыщению магнитов.
    2) С потребителями как раз проблем нету. Чем больше- тем лучше, гидрожидкость охлаждается хоть.. Тем более счас переходят на технику 5000psi - вопрос становится очень актуальным.. Так же, правда, как и борьба с течью.. :-(

    А пот поводу рулевых поверхностей.
    У электроприводов главный недостаток- высокая инерционность, что и сильно ограничивает его применение. даже у "компактных и легких"
    Причем инерционность практически не зависит от размеров мотора, она всегда им пропорциональна…
    То есть пока он стартанет, разгонится, начнет крутить- а уже панель перекладывать на другую сторону надо.
    Клапана тут практически безинерционны, и мгновено реагируют на сигнал..
    Так что до конца века гидравлики еще довольно далеко..

    Re: Электромеханическая система уборки-выпуска шасси

    Ого, жаль тут нет "плюсика", за такой комментарий я бы Вашу "карму" на этом форуме приподнял;-).

    Да, спасибо за ответ. Есть над чем подумать:). Как всегда - кажется, что вот как все можно здорово переделать. Но не тут то было. Тем не менее, какие есть мысли у меня по этому всему:

    1) Электромоторы тяжелые, и редукторы тоже. Но, если правильные люди над этим поработают, думаю, что по результату все не так-то будет и тяжелым. Хотя, это все мои рассуждалки и не более того. Есть примеры - в мире радиоуправляемых моделей - сейчас распространены бесколлекторные электродвигатели. Очень мощные и легкие одновременно. Хотя, конечно, согласен - до тех пор, пока на самолете есть гидросистема, нет смысла "дергаться" с шасси. Смысл появится только тогда, когда гидросистемы не будет совсем.

    2) А чтобы гидросистемы не стало, нужно переводить рулевые поверхности на электричество. Действительно, про момент инерции я не подумал. Если это единственный оставшийся фактор, то вполне понятно, что с этим делать. Мотор должен быть с максимально легким ротором, работать как можно с меньшим количеством оборотов. Редуктор должен содержать как можно меньше шестерен, и все они должны быть облегчены. В результате такая система выдаст меньшее усилие на выходе. Т.е., помимо этого, нужно все же работать над уменьшением потребного усилия для привода рулевых поверхностей (например, аэродинамикой). Но это уже делали (ил-62), поэтому тут тоже понятно, что и как делать.

    3) Остается один только вопрос - кто и когда это сделает:). К сожалению, то, что видно сейчас - все зажаты во временные и финансовые рамки. В таких условиях проще, дешевле, быстрее найти интегратора, который предложит готовое решение. Что-то мне подсказывает, что это решение не будет на электро-тяге. В этом замкнутом круге выход может быть только у каких-то больших корпораций, которые могут себе позволить дорогостоящие НИОКР по созданию приводов, и по их сертификации. Кстати, может кто знает - у Боинга на Дримлайнере - гидравлика или электроприводы? При первом поиске таких подробностей не нашел.

    По иронии судьбы я этим как раз и занимаюсь:-)
    И в принципе, обнадеживающие результаты есть. Есть некоторые компоновочные решения, которые позволяют мотору быть медленным и редуктору легким:-) Например, вполне элегантно выглядит компоновка полностью электрического ground spoiler actuator. Еще более элегантно выглядит привод закрылков.

    Но занимаюсь я частным порядком, поэтому совершенно не факт, что смогу или захочу применять это в авиаиндустриии. Геморройно все там. Автомобилестроительная отрасль гораздо более падка на новизну и неслыханно щедра при этом:-)

    Загрузка...