Автомобильный портал - ZadonskVokzal

Двигатель тесла своими руками схемы. Генератор Тесла своими руками – схема и последовательность проведения работ

Никола Тесла – один из известнейших ученых в области электроэнергетики и электричества, чье научное наследие до сих пор вызывает многочисленные споры. И если практически реализованные проекты активно используются и известны повсеместно, то некоторые нереализованные до сих пор являются объектами исследований, как серьезными организациями, так и любителями.

Генератор или вечный двигатель?

Большинство ученых отрицает возможность создания генератора на свободной энергии. На это следует возразить тем, что даже в прошлом многие современные достижения также казались невозможными. Дело в том, что наука имеет множество областей, где исследования проведены далеко не полностью. Это особенно касается вопросов физических полей и энергии. Те виды энергии, которые нам знакомы, можно ощутить и измерять. Но ведь нельзя отрицать наличие неизвестных видов только на том основании, что пока не существует методов и приборов для их измерения и преобразования.

Для скептиков любые предложения генераторов, схемы и идеи, основанные на преобразовании свободной энергии, кажутся вечными двигателями, которые работают, не потребляя энергии, да еще способны вырабатывать излишек уже в виде известной энергии, тепловой или электрической.

Здесь не идет речь о вечных двигателях. На самом деле вечный генератор использует свободную энергию, которая в настоящее время пока еще не имеет внятного теоретического обоснования. Чем раньше считался свет? А сейчас он используется для выработки электрической энергии.

Альтернативная энергетика

Сторонники традиционной физики и энергетики отрицают возможность создания работоспособного генератора, оперируя существующими понятиями, законами и определениями. Приводится масса доказательств, что подобные устройства не могут существовать на практике, поскольку противоречат закону сохранения энергии.

Сторонники «теории заговора» убеждены, что расчеты генератора существуют, как и его работающие прототипы, но они не предъявляются науке и широкой общественности, поскольку не выгодны современным энергетическим компаниям и могут вызвать кризис экономики.

Энтузиасты неоднократно делали попытки создания генератора, ими построены немало прототипов, но отчеты о работе почему-то регулярно пропадают или исчезают. Отмечено, что периодически закрываются сетевые ресурсы, посвященные альтернативной энергетике.

Это может свидетельствовать о том, что конструкция в действительности работоспособна, и создать генератор своими руками возможно даже в домашних условиях.

Многие путают понятия генератора и трансформатора (катушка) Тесла. Для разъяснений нужно остановиться на этом подробнее. Трансформатор Тесла изучен достаточно и доступен для повторения. Многие производители успешно выпускают различные модели трансформаторов как для практического использования в различных устройствах, так и для демонстрационных целей.

Трансформатор Тесла представляет собой преобразователь электрической энергии с низкого напряжения в высокое. Выходное напряжение может составлять миллионы вольт, но сама конструкция при этом не представляет высокой сложности. Гениальность изобретателя состоит в том, что ему удалось собрать устройство, использующее известные физические свойства электромагнитных полей, но при этом совершенно иным способом. Исчерпывающего теоретического обоснования работы устройства не существует до сих пор.

В основе конструкции лежит трансформатор с двумя обмотками, с большим и малым количеством витков. Самое главное – отсутствует традиционный ферромагнитный сердечник, и взаимосвязь между обмотками получается очень слабой. Учитывая уровень выходного напряжения трансформатора Тесла, можно сделать вывод, что обычная методика расчета трансформатора, даже с учетом высокой частоты преобразования, здесь неприменима.

Генератор Тесла

Иное предназначение имеет генератор. Конструкция генератора также использует трансформатор, подобный высоковольтному. Работая на одинаковом принципе с трансформатором, генератор способен создавать на выходе излишки энергии, значительно превосходящие затраченные на первоначальный запуск устройства. Основная задача состоит в методике изготовления трансформатора и его настройке. Важна точная настройка системы на частоту резонанса. Ситуация осложняется тем, что таких данных не имеется в свободном доступе.

Как сделать генератор

Чтобы собрать генератор Тесла, необходимо совсем немного. В интернете можно найти данные по сборке трансформатора генератора Тесла своими руками и схемы для запуска конструкции. На основе имеющейся информации ниже даны рекомендации, как должна быть выполнена самостоятельная сборка конструкции, и краткая методика настройки.

Трансформатор должен удовлетворять противоречивым требованиям:

  • Высокочастотная свободная энергия требует уменьшения габаритов (подобно разнице в размерах телевизионных антенн метрового и дециметровых диапазонов);
  • С уменьшением габаритов падает КПД конструкции.

Трансформатор

Вопрос частично решается подбором диаметра и количества первичной обмотки трансформатора. Оптимальный диаметр обмотки составляет 50 мм, поэтому удобно для намотки использовать отрезок пластиковой канализационной трубы соответствующей длины. Экспериментально установлено, что количество витков обмотки должно составлять не менее 800, лучше это количество удвоить. Диметр провода не имеет существенного значения для самодельной конструкции, поскольку ее мощность невелика. Поэтому диаметр может лежать в диапазоне от 0.12 до 0.5 мм. Меньшее значение создаст трудности при намотке, а большее – увеличит габариты устройства.

Длина трубы берется с учетом количества витков и диаметра провода. К примеру, провода ПЭВ-2 0.15 мм диаметр с изоляцией составляет 0.17 мм, суммарная длина обмотки – 272 мм. Отступив от края трубы 50 мм для крепления, сверлят отверстие для крепления начала обмотки, а через 272 мм еще одно – для конца. Запас трубы сверху составляет пару сантиметров. Итого общая длина отрезка трубы будет 340-350 мм.

Для намотки провода его начало продевают в нижнее отверстие, оставляют там запас в 10-20 см и закрепляют скотчем. После того, как обмотка выполнена, ее конец такой же длины продевают в верхнее отверстие и тоже закрепляют.

Важно! Витки обмотки должны плотно прилегать друг к другу. Провод не должен иметь перегибов и петель.

Готовую обмотку обязательно покрывают сверху электротехническим лаком или эпоксидной смолой для исключения сдвига витков.

Для вторичной обмотки нужен более серьезный провод с сечением не менее 10 мм2. Это соответствует проводу с диаметром 3.6 мм. Если есть толще, то так даже лучше.

Обратите внимание! Поскольку система работает на высокой частоте, то, благодаря скин-эффекту, ток распространяется в поверхностном слое провода, поэтому вместо него можно взять тонкостенную медную трубку. Скин-эффект – еще одно оправдание большого диаметра провода вторичной обмотки.

Диаметр витков вторичной обмотки должен быть в два раза больше первичной, то есть 100 мм. Вторичку можно намотать на отрезке канализационной трубы 110 мм или на любом другом простом каркасе. Труба или подходящая болванка нужны только для процесса намотки. Жесткая обмотка в каркасе нуждаться не будет.

Для вторичной обмотки количество витков составляет 5-6. Есть несколько вариантов конструкции вторичной обмотки:

  • Сплошная;
  • С расстоянием между витками 20-30 мм;
  • Конусообразная с теми же расстояниями.

Конусообразная представляет наибольший интерес, поскольку расширяет диапазон настройки (имеет более широкую частотную полосу). Нижний первый виток делается диаметром 100 мм, а верхний доходит до 150-200 мм.

Важно! Необходимо строго выдерживать расстояние между витками, а поверхность провода или трубки нужно сделать гладкими (в лучшем случае отполировать).

Схема запитки

Для первоначального запуска необходима схема, которая подает на трансформатор генератора Тесла импульс энергии. Далее генератор переходит в автоколебательный режим и постоянно во внешнем питании не нуждается.

На сленге разработчиков устройство для запитки именуется «качер». Те, кто знаком с электроникой, знают, что правильное название устройства – блокинг-генератор (ударный генератор). Подобное схемотехническое решение вырабатывает однократный мощный электрический импульс.

Разработано много вариантов блокинг-генераторов, которые делятся на три группы:

  • На электронных лампах;
  • На биполярных транзисторах;
  • На полевых транзисторах с изолированным затвором.

Ламповый электромагнитный генератор на мощных генераторных лампах работает с высокими выходными параметрами, но его конструирование затрудняется наличием комплектующих. Кроме того, требуется не двух,- а трехобмоточный трансформатор, поэтому ламповые блокинг-генераторы в настоящее время встречаются редко.

Самое широкое распространение получили качеры на биполярных транзисторах. Их схемотехника хорошо отработана, настройка и регулировка просты. Используются транзисторы отечественного производства 800-й серии (КТ805, КТ808, КТ819), которые имеют хорошие технические параметры, широко распространены и не вызывают финансовых затруднений.

Распространение мощных и надежных полевых транзисторов сделало возможным конструирование блокинг-генераторов с повышенным КПД благодаря тому, что MOSFET или IGBT транзисторы имеют лучшие параметры по падению напряжения на переходах. Кроме роста КПД, становится менее проблематичной проблема охлаждения транзисторов. Проверенные схемы используют транзисторы IRF740 или IRF840, также недорогие и надежные.

Перед тем, как собрать генератор в готовую конструкцию, еще раз перепроверьте качество изготовления всех комплектующих. Соберите конструкцию и подайте на нее питание. Переход в автоколебательный режим сопровождается наличием напряжения на обмотках трансформатора (на выходе вторички). Если напряжение отсутствует, то необходима настройка частоты блокинг-генератора в резонанс с частотой трансформатора.

Важно! При работе с генератором Тесла необходимо соблюдать повышенную осторожность, поскольку при запуске в первичной обмотке наводится высокое напряжение, способное привести к несчастному случаю.

Применение генератора

Генератор Тесла и трансформатор конструировались изобретателем как универсальные устройства для беспроводной передачи электрической энергии. Никола Тесла неоднократно проводил эксперименты, подтверждающие его теорию, но, к сожалению, следы отчетов по передаче энергии также оказались утеряны или надежно спрятаны, как и многие другие его конструкции. Разработчики только недавно начали конструировать устройства для передачи энергии, но и то на сравнительно малые расстояния (беспроводные зарядные устройства для телефонов – хороший пример).

В эпоху неотвратимого истощения запасов невосполняемых природных ресурсов (углеводородного топлива) разработка и конструирование устройств альтернативной энергетики, в том числе бестопливного генератора, имеет высокое значение. Электрогенератором на свободной энергии при его достаточной мощности можно пользоваться для освещения и отопления домов. Не следует отказываться от исследований, ссылаясь на отсутствие опыта и профильного образования. Многие важные изобретения сделаны людьми, которые были профессионалами в совершенно других областях.

Видео

Сегодня я собираюсь показать вам, как я построить простую катушку Тесла! Вы могли видеть такую катушку в каком то магическом шоу или телевизионном фильме. Если мы будем игнорировать мистическую составляющую вокруг катушки Тесла, это просто высоковольтный резонансный трансформатор который работает без сердечника. Так, чтобы не заскучать от скачка теории давайте перейдем к практике.

Схема данного устройства очень простая - показана на рисунке.

Для создания нам нужны следующие компоненты:

Источник питания, 9-21V , это может быть любой блок питания

Маленький радиатор

Транзистор 13009 или 13007, или почти любые транзисторы NPN с аналогичными параметрами

Переменный резистор 50kohm

180Ohm резистор

Катушка с проводом 0,1-0,3, я использовал 0.19mm, около 200 метров.

Для намотки нужен каркас, это может быть любой диэлектический материал - цилиндр примерно 5 см и длиной 20 см. В моем случае это часть 1-1 / 2 дюйма ПВХ трубы из строительного магазина.

Начнем с самой сложной части - вторичной обмотки. Он имеет 500-1500 мотков катушки, мой около 1000 оборотов. Закрепить начало провода с выводом и начать наматывать основной слой - для ускорения процесса можно это делать шуруповертом.Так же желательно вспрыснуть уже намотаную катушку лаком.

Первичная катушка намного проще, я положил бумажную ленту липкой стороной наружу, в случае, чтобы сохранить способность передвигать позицию и намотайте ее на 10 витков провода.

Вся схема собрана на макетной плате. Будьте осторожны при пайке переменного резистора! 9/10 катушки не работает из-за неправильно припаянного резистора. Подключение первичных и вторичных обмоток тоже не легкий процесс, т.к изоляция последних имеет специальное покрытие, которое должно быть зачищено перед пайкой.

Таким образом, мы сделали катушку Теслы. Перед тем, как включить питание в первый раз, поместите переменный резистор в среднем положении и поставите лампочку вблизи катушки, и тогда вы сможете увидеть эффект беспроводной передачи энергии. Включите питание, и медленно поворачивайте переменный резистор. Это довольно слабая катушка, но каким-либо образом бытдьте осторожны и не размещайте рядом электронные устройства: такие как сотовые телефоны, компьютеры и т.д. с рабочей зоной катушки.

Спасибо за внимание

Так же не забываем о экономии при покупке товаров на Алиєкспресс с помощью кэшбэка

Для веб администраторов и владельцев пабликов главная страница ePN

Для пользователей покупающих на Алиэкспресс с быстрым выводом % главная страница ePN Cashback

Удобный плагин кэшбеэка браузерный плагин ePN Cashback

1. Управляем маленькими моторчиками

Управление маленьким двигателем может быть может осуществляться довольно просто. Если двигатель достаточно маленький, он может быть непосредственно соединен с выводом Arduino, и просто изменяя уровень управляющего сигнала от логической единицы до нуля будем контролировать моторчик. Этот проект раскроет вам основную логику в управлении электродвигателем; однако, это не является стандартным способом подключения двигателей к Arduino. Мы рекомендуем, вам изучить данный способ, а затем перейти на следующую ступень - заняться управлением двигателями при помощи транзисторов.

Подключим миниатюрный вибромоторчик к нашему Arduino.

Средство разработки Arduino IDE имеет возможность подключать различные библиотеки через менеджер библиотек, а так же скачанные из интернета в виде ZIP архива или директорий с файлами. Мы рассмотрим различные способы добавления / скачивания библиотек Arduino, которые упрощают жизнь разработчикам программ. Вы можете воспользоваться некоторыми встроенными возможностями добавления библиотек:

Этот станок спроектирован так, чтобы сделать лазерную гравировку на древесине и непрозрачном пластике, имея Arduino и GRBL в качестве основы автоматизации машиного кода. Станок имеет 2 оси движения, и этого достаточно для наших задач. Это только оси X и Y, которые перемещают лазер мощностью 1 Вт 445 нм. В этой статье вы найдете все нужные материалы и ссылки для создания такого лазерного монстра)

DS18B20 - это цифровой датчик температуры. Датчик очень прост в использовании. Во-первых, он цифровой, а во вторых - у него всего лишь один контакт, с которого мы получаем полезный сигнал. То есть, вы можете подключить к одному Arduino одновременно огромное количество этих сенсоров. Пинов будет более чем достаточно. Мало того, вы даже можете подключить несколько сенсоров к одному пину на Arduino! Но обо всем по порядку.

Новомодный феномен резонансного трансформатора Николы Тесла возник недавно, а Интернет забит фотографиями и интригующими видеосъемками молний и коронарных разрядов.

Вспомним, что трансформатор первоначально был предназначен не для показательных выступлений, а для передачи радиосигналов на далекие расстояния. В связи с этим предлагаю ознакомиться с его принципом работы и найти ему практическое применение.

Трансформатор Тесла состоит из двух основных цепей, первичной и вторичной, см. рис. 1а.

1. Первичная цепь, как генерирующая колебания определенной частоты, состоит из высоковольтного источника питания, накопительного конденсатора С1, разрядника и катушки связи L1. Когда искровой промежуток находится в проводящем состоянии, LC–элементы связаны последовательно, формируя цепь определенной частоты.

2. Вторичной цепью является последовательный колебательный контур, который состоит из резонансной катушки индуктивности L2, открытой емкостью С, образованной заземлением и сферой, см. рис. 1а.

Частоты колебаний обоих цепей определены их структурными параметрами и должны совпадать. Выходное напряжение трансформатора Тесла исчисляется десятками тысяч вольт благодаря повышенному количеству витков во вторичной цепи. Вторичная цепь резонансного трансформатора Тесла, это открытый колебательный контур, который был открыт ранее Дж. К. Максвеллом.

Обратимся к классической теории принципа действия открытого колебательного контура

Как известно колебательный контур состоит из катушки индуктивности и конденсатора. Исследуем простейший колебательный контур, катушка которого состоит из одного витка, а конденсатор представляет собой две рядом расположенные металлические пластины. Подадим в разрыв индуктивности контура 1 переменное напряжение от генератора, см. рис.2а. В витке потечет переменный ток и создаст вокруг проводника магнитное поле. Это сможет подтвердить магнитный индикатор в виде витка, нагруженного лампочкой. Для того, что бы получить открытый колебательный контур, раздвинем пластины конденсатора. Мы наблюдаем, что лампа индикатора магнитного поля продолжает гореть. Чтобы лучше понять, что происходит в данном опыте, смотри рис. 2а. По витку контура 1 течёт ток проводимости, который вокруг себя создает магнитное поле Н, а между пластинами конденсатора — равный ему так называемый ток смещения. Несмотря на то, что между пластинами конденсатора нет тока проводимости, опыт показывает, что ток смещения создаёт такое же магнитное поле, как и ток проводимости. Первым, кто об этом догадался, был великий английский физик Дж. К. Максвелл.

В 60-х годах 18-го столетия, формулируя систему уравнений для описания электромагнитных явлений, Дж. К. Максвелл столкнулся с тем, что уравнение для магнитного поля постоянного тока и уравнение сохранения электрических зарядов переменных полей (уравнение непрерывности) несовместимы. Чтобы устранить противоречие, Максвелл, не имея на то никаких экспериментальных данных, постулировал, что магнитное поле порождается не только движением зарядов, но и изменением электрического поля, подобно тому, как электрическое поле порождается не только зарядами, но и изменением магнитного поля. Величину, где электрическая индукция, которую он добавил к плотности тока проводимости, Максвелл назвал током смещения. У электромагнитной индукции появился магнитоэлектрический аналог, а уравнения поля обрели замечательную симметрию. Так, умозрительно был открыт один из фундаментальнейших законов природы, следствием которого является существование электромагнитных волн.

Раз так, убедимся еще раз, что происходит, когда закрытый колебательный контур превращается в открытый и как можно обнаружить электрическое Е-поле? Для этого рядом с колебательным контуром поместим индикатор электрического поля, это вибратор, в разрыв которого включена лампа накаливания, она пока не горит. Постепенно раскрываем контур, и мы наблюдаем, что лампа индикатора электрического поля загорается, рис. 2б. Электрическое поле теперь не сосредоточено между пластинами конденсатора, его силовые линии идут от одной пластины к другой через открытое пространство. Таким образом, мы имеем экспериментальное подтверждение утверждения Дж. К. Максвелла, что емкостной излучатель порождает электромагнитную волну. Никола Тесла обратил на этот факт внимание, что при помощи совсем не больших излучателей можно создать достаточно эффективный прибор для излучения электромагнитной волны. Так родился резонансный трансформатор Н. Тесла. Проверим и этот факт, для чего вновь рассмотрим назначение деталей трансформатора.

И так, геометрические размеры сферы и технические данные катушки индуктивности определяют частоту последовательного резонанса, которая должна совпадать с частотой генерации разрядника.

Только режим последовательного резонанса позволяет трансформатору Тесла достигать таких величин напряжений, что на поверхности сферы появляется коронарный разряд и даже молнии.

Рассмотрим работу трансформатора Тесла, как последовательного колебательного контура:

Этот контур необходимо рассматривать как обычный LC–элемент, рис. 1а.б, а так же рис. 2а, где включены последовательно индуктивность L, открытый конденсатор С и сопротивление среды Rср. Угол сдвига фаз в последовательном колебательном контуре между напряжением и током равен нулю (?=0), если ХL = -Хс, т.е. изменения тока и напряжения в нем происходят синфазно. Это явление называется резонансом напряжений (последовательным резонансом). Следует отметить, что при понижении частоты от резонанса, ток в контуре уменьшается, а резонанс тока несет емкостной характер. При дальнейшей расстройке контура и понижении тока на 0,707, его фаза смещается на 45 градусов. При расстройке контура вверх по частоте, он приобретает индуктивный характер. Это явление часто используют в фазоинверторах.

Рассмотрим схему последовательного колебательного контура изображенную на рис. 3, где добротности контура Q может находиться в пределах 20-50 и много выше.

Здесь полоса пропускания определяется добротностью контура:

Тогда напряжение на пластинах излучателя будет выглядеть согласно следующей формуле:

U2 = Q * U1

Напряжение U2 согласно расчетам составляет 2600В, что подтверждается практической работой трансформатора Тесла. В таблице 1 расчетные данные приведены для частоты 7.0 МГц не случайно, это дает возможность любому желающему коротковолновику провести радиолюбительский эксперимент в эфире. Здесь входное напряжение U1 условно взято за 100 Вольт, а добротность за 26.

Таблица 1

f (МГц) L (мкГн) ХL (Ом) C (пФ) −Xc (Ом) ?f (кГц) Q U1/U2 (В)
7 30,4 1360 17 1340 270 26 100/2600

Данное утверждение приемлемо в тех случаях, когда отсутствует изменение частоты или сопротивления нагрузки данного контура. В трансформаторе Н. Тесла оба фактора постоянны по определению.

Полоса пропускания трансформатора Тесла зависит от нагрузки, т.е., чем выше связь открытого конденсатора С (сфера-земля) со средой, тем больше нагружен контур, тем шире его полоса пропускания. Это связано с увеличением тока смещения. Тоже происходит с колебательным контуром, нагруженным активной нагрузкой. Таким образом, размеры сферы трансформатора определяет его емкость С и соответственно диктует не только ширину полосы пропускания, но и сопротивление излучения, которое в идеале должно равняться сопротивлению среды. Здесь нужно понимать, что чрезмерное увеличение полосы пропускания за счет увеличения объема излучателей приведет к снижению добротности и соответственно приведет к уменьшению эффективности резонансного трансформатора в целом.

Рассмотрим емкостной элемент трансформатора Тесла, как двухполюсный элемент связи со средой:

Вполне справедливо называть емкостной трансформатор Тесла, диполем Тесла, ведь «диполь» означает di(s) дважды + polos полюс, что исключительно применимо к двухполюсным конструкциям, каковым и является резонансный трансформатор Николы Тесла с емкостной двухполюсной нагрузкой (сфера+земля).

В рассматриваемом диполе, емкость излучателя является единственным элементом связи со средой. Излучатель антенны, это два электрода внедренные в среду, см. Рис. 4. и при появлении на них потенциала напряжения, оно автоматически прикладывается к среде, вызывая в ней некий потенциал –Q и +Q. Если это напряжение переменно, то и потенциалы меняют свой знак на противоположный с той же частотой, а в среде появляется ток смещения. Так как прикладываемые напряжение и ток синфазны по определению последовательного колебательного контура, то и электромагнитное поле в среде претерпевает те же изменения.

Вспомним, что в диполе Герца, где напряжение сначала прикладывается к длинному проводнику, то для волны в ближней зоне характерно, что Е=1, а Н?1. Это связано с тем, что в этом проводнике существуют реактивные LC элементы, которые вызывают задержку фазы поля Н, т.к. полотно антенны соизмеримо с?.

В диполе Тесла, где ХL = −Хс (реактивной составляющей нет), излучающий элемент длиной до 0,05 ? не резонансен и представляет лишь емкостную нагрузку. При толстом и коротком излучателе, его индуктивность практически отсутствует, она компенсируется сосредоточенной индуктивностью. Здесь напряжение прикладывается сразу к среде, где одновременно возникают поле Е и поле Н. Для волны диполя Тесла характерно, что Е=Н=1, т.е. волна в среде сформирована изначально. Здесь мы отождествляем напряжение в контуре с электрической составляющей поля Е (единица измерения В/м), а ток смещения с магнитной составляющей поля Н (единица измерения А/м), только диполь Тесла излучает синфазное поле Е и поле Н.

Попробуем еще раз рассмотреть данное утверждение немного в другой плоскости:

Допустим, мы имеем напряжение, приложенное к пластинам (реактивной составляющей нет, она скомпенсирована), которые нагружены на активное сопротивление среды Rср, как на участок электрической цепи (Рис. 4).

Вопрос: Имеется ли ток в среде (в цепи) именно в этот момент времени?

Ответ: Да, чем больше приложено напряжение к активному сопротивлению среды, тем больше ток смещения в этот же период времени, и это не противоречит закону Дж. К. Максвелла и если хотите закону Ома для участка цепи. По этому синфазное изменение величины напряжения и тока в последовательном контуре в режиме последовательного резонанса, вполне справедливо порождают синфазность полей Е и Н в среде, см. Рис. 4б.

Подводя итог, мы можем сказать, что емкостной излучатель создает вокруг себя мощное и концентрированное электромагнитное излучение. Диполь Тесла обладает особенностью накопления энергии, что характерно только последовательному LC-контуру, где суммарное выходное напряжение значительно превосходит входное, что наглядно видно по результатам таблицы. Данное свойство давно практикуют в промышленных радиоустройствах для повышения напряжения в устройствах с большим входным сопротивлением.

Таким образом, мы можем сделать следующий вывод:

Диполь Тесла — это высокодобротный последовательный колебательный контур, где сфера является открытым элементом, осуществляющим связь со средой. Индуктивность L является лишь закрытым элементом и резонансным трансформатором напряжения, не участвующим в излучении.

Внимательно изучив цели построения резонансного трансформатора Николы Тесла, невольно приходишь к выводу, что он был предназначен для передачи энергии на расстояние, но эксперимент был прерван, а потомкам остается догадываться о истинной цели этого чуда конца 19 и начала 20 века. Не случайно Никола Тесла в своих записях оставил следующее изречение: «Пусть будущее рассудит и оценит каждого по его трудам и достижениям. Настоящее принадлежит им, будущее, ради которого я работаю, принадлежит мне».

Краткая справка: Электромагнитная волна была открыта Максвеллом в 60-х годах 18 века при помощи емкостного излучателя. На рубеже 20-го века Н. Тесла доказал возможность передачи энергии на расстоянии при помощи емкостных излучателей резонансного трансформатора.

Г. Герц, продолжая опыты с электромагнитным полем и опираясь на теорию Максвелла в 1888 году доказал, что электромагнитное поле излучаемое емкостным излучателем равно полю излучаемое электрическим вибратором.

В настоящее время диполь Герца и магнитная рамка К. Брауна, открытая в 1916 году, широко используются на практике, а емкостной излучатель незаслуженно забыт. Уважая заслуги Максвелла и Тесла, автор данной статьи в память о них провел лабораторные эксперименты с емкостной антенной и принял решение обнародовать их. Эксперименты были проведены на частоте 7 МГц в домашних условиях и показали не плохие результаты.

ИТАК! Многочисленные эксперименты показали, что резонансные элементы любого контура можно изменять в разных пределах, и как с ними поступишь, так они и поведут себя. Интересно то, что если уменьшать излучающую емкость открытого контура, то для получения резонанса приходится увеличивать индуктивность. При этом на краях излучателя и других неровностях появляются стримеры (от англ. Streamer). Streamer — это тускло видимая ионизация воздуха (свечение ионов), создаваемая полем диполя. Это и есть резонансный трансформатор Тесла, каким мы его привыкли видеть на просторах Интернета.

Можно увеличить емкость и в режиме резонанса напряжений добиться максимальной отдачи сбалансированного электромагнитного поля и использовать изобретение Тесла, как диполь для передачи энергии на расстояния, т.е. как емкостную антенну. И все же, Тесла был прав, когда отказался от металлического сердечника внутри повышающей катушки, ведь он вносил потери в том месте, где зарождалась электромагнитная волна. Тем не менее, результаты экспериментов привели к единственно правильному условию, когда LC-параметры стали соответствовать табличным данным (табл. 1).

Проверка принципа действия диполя Тесла на практике

Для проведения экспериментов с трансформатором Тесла над конструкцией не пришлось долго думать, здесь помог радиолюбительский опыт. В качестве излучателей вместо сферы и земли были взяты две гофрированные алюминиевые (вентиляционные) трубы диаметром 120 мм и длиной по 250 мм. Удобство применения заключалось в том, что их можно растягивать или сжимать как витки катушки, тем самым, меняя емкость контура в целом и соответственно соотношение L/С. «Трубы–емкости» располагались горизонтально на бамбуковой палке с расстоянием 100 мм. Катушка индуктивности L2 (30 мкГн) проводом 2 мм, была вынесена ниже оси цилиндров на 50 см. с тем, чтобы не создавать вихревых токов в сфере излучателей. Еще лучше будет, если катушку вынести за один из излучателей, располагая ее на одной оси с ними, где эл. магнитное поле минимально и имеет форму «пустой воронки». Образованный, этими элементами колебательный контур был настроен в режиме последовательного резонанса, где было соблюдено основное правило, где ХL = -Хс. Катушка связи L1 (1 виток, 2 мм), обеспечивала связь с трансивером мощностью 40 Вт. При ее помощи было настроено согласование импровизированного диполя Тесла с фидером 50 Ом, что обеспечило режим бегущей волны и полную отдачу мощности без отражения обратно в генератор. Данный режим в трансформаторе Тесла обеспечивает разрядник. Фидер длиной 5 метров для чистоты эксперимента был обеспечен с обоих сторон ферритовыми фильтрами.

Для сравнения испытывалось три антенны:

  • диполь Тесла (L= 0.7м, КСВ=1,1),
  • разрезной укороченный диполь Герца (L = 2×0,7м, удлинительная катушка, фидер 5 метров защищенный ферритовыми фильтрами КСВ=1,0),
  • горизонтальный полуволновой диполь Герца (L = 19,3м, фидер защищен ферритовыми фильтрами КСВ=1,05).

На расстоянии 3 км. в черте города был включен передатчик с постоянной несущей сигнала.

Диполь Тесла (7 МГц) и укороченный диполь с удлиняющей катушкой, по очереди размещались возле кирпичного здания на расстоянии всего 2 метра, и на момент эксперимента находились в равных условиях на высоте (10-11 м).

В режиме приема диполь Тесла превосходил укороченный диполь Герца на 2-3 балла (12-20 дБ) по шкале S-метра трансивера и более.

Затем вывешивался заранее настроенный полуволновый диполь Герца. Высота подвеса 10-11 м. на расстоянии от стен в 15-20 м.

По усилению диполь Тесла уступал полуволновому диполю Герца примерно на 1 балл (6-8 дБ). Диаграммы направленности всех антенн совпадали. Стоит отметить, что полуволновый диполь был размещен не в идеальных условиях, а практика построения диполя Тесла требует новых навыков. Все антенны находились внутри двора (четыре здания) как в экранированном котле.

Общие выводы

Рассматриваемый диполь Тесла на практике работает почти как полноценный полуволновый диполь Герца, что подтверждает равенство электромагнитных полей от электрического и емкостного диполя. Он подчиняется принципам двойственности, что не идет в разрез с теорией антенн. Несмотря на свои малые размеры (0,015-0,025 ?), диполь Тесла осуществляет связь с пространством с помощью емкостных излучателей. Он создают в пространстве вокруг излучателя синфазное поле Е и поле Н, из чего следует, что поле диполя Тесла в пределах излучателей уже сформировано и имеет «мини-сферу», что приводит к ряду новых выводов о свойствах этого диполя. Таким образом, диполь Тесла имеет все основания для практических экспериментов в радиолюбительской службе в диапазонах коротких, средних и особенно длинных волн. Думаю, что любителям длинноволновой связи (137 кГц) стоит обратить на этот эксперимент особое внимание, где КПД рассматриваемого диполя в десятки раз выше экспериментальных антенн на основе укороченного диполя Герца или резонансных рамок.

Вспомним, где на практике применяется диполь Тесла? К сожалению, для гражданского контингента до некоторого времени он был закрыт. Молчание нарушил американский радиолюбитель Т. Хард, который в среде радиолюбителей представил миру радиолюбителей небезызвестную ЕН–антенну.

Справка

Такой тип антенн (см. Рис. 5) с середины 40-х годов с успехом практиковался в войсковой мобильной КВ радиосвязи многих стран, в том числе и СССР. Рабочий диапазон частот — 1,5-12 МГц. Непосредственным участником разработки этой антенны в армии США был Т. Хард. Он дал новую жизнь изобретению Н. Тесла, которую в среде DX-менов категорично отвергают. Их понять можно, ведь этот диполь нетрадиционен и похож на недоработанную модель автомобиля, а DX-менам нужно участвовать в «гонках» без риска. Не стоит скрывать, что есть и другие причины, — Т. Хард представил принцип действия ЕН-антенны в рамках нетрадиционной теории. Вместе с тем, большинству радиолюбителей-экспериментаторов данный тип антенн очень интересен, и его относят к числу экспериментальных и даже мобильных антенн. Что касается схожести запатентованных конструкций Н. Тесла и Т. Харда, то это вызывает лишь улыбку. Что ж, диполь Герца тоже имел своих последователей, это длинный ряд вибраторных антенн, таких как диполь Надененко, антенна Бевереджа, Уда-Яги и пр. Таким образом, каждый из нас вправе внести свою лепту в развитие емкостных антенн и оставить потомкам свое имя в антенной технике.

Современная ЕН-антенна Т. Харда и ее схожесть с диполем Тесла

Так что же представляет из себя ЕН-антенна Т. Харда? Это по сути та же антенна емкостного типа, один в один схожая с диполем Тесла, см. рис. 5а и 5б., разница заключается лишь в месте размещения катушки L2, и это справедливая заслуга Теда, ведь в точке создания электромагнитного поля среда должна быть свободна от вихревых полей создаваемых катушкой индуктивности.

Здесь вместо земли и сферы используется два цилиндра, которые и создают открытую емкость излучающего конденсатора.

Проводя равенство между диполем Тесла и ЕН-антенной Т. Харда, можно придти к следующему определению: ЕН-антенна — это высокодобротный последовательный колебательный контур, где емкость С является открытым элементом, который осуществляет связь со средой. Индуктивность L является закрытым резонансным элементом, он работает как компенсатор малой реактивной составляющей емкостного излучателя.

С этими антеннами можно ближе познакомиться на: http://ehant.narod.ru/book.htm .

Итак, мы пришли к выводу, что диполь Н. Тесла и ЕН-антенна Т. Харда — это совершенно одинаковые антенны, их отличают лишь конструктивные различия. Из теории последовательного колебательного контура мы видим, что в данной антенне должно соблюдаться условие последовательного резонанса. К сожалению, на практике трудно выполнить условия точного фазирования, хотя и возможно. Т. Хард об этом умолчал, но предусмотрел это и предложил несколько вариантов для фазировки антенны так называемой «входной катушкой». По сути это реактивный L–элемент, хотя в некоторых конструкциях используют и фазирующие LC–элементы на основе трансформатора Бушеро-Шери.

Краткое рассмотрение энергетики в пользу диполя Тесла

По утверждению приверженцев ЕН-антенн, синфазность излучения полей Е и Н имеет место и играет немалую роль в помехозащищенности.

Это справедливо, т.к. вектора Е и Н в силу своей синфазности складываются, а отношение сигнал к шуму возрастает в 1,4 раза или на 3 Дб уже в ближней зоне антенны, что не так уж и маловажно.

Если в некоторый момент времени зарядить конденсатор C до напряжения V 0 , то энергия, сосредоточенная в электрическом поле конденсатора, равна:

где:
С — ёмкость конденсатора.
Vo — максимальное значение напряжения.

Из приведенной формулы ясно, что напряжение среды Ес в данной антенне прямо пропорционально емкости открытого конденсатора умноженное на квадрат приложенного напряжения... И это напряжение вокруг излучателя антенны может составлять десятки и сотни киловольт, что немаловажно для рассматриваемого излучателя.

Рассматриваемый тип антенны является высокодобротным колебательным контуром, а добротность колебательных контуров значительно больше единицы, то напряжение, как на катушке индуктивности, так и на обкладках конденсатора превышают напряжение приложенное к цепи в Q раз. Не случайно явление резонанса напряжений используется в технике для усиления колебания напряжения, какой либо частоты.

Из теории антенн мы знаем, что для создания необходимого поля, нужны объем и добротность. Уменьшив размеры диполя Герца (Рис. 6а) до размеров рассматриваемых излучателей антенны, к примеру, в 10 раз, во столько же раз уменьшилось расстояние между обкладками конденсатора СС, и соответственно действующая высота h д. Объем ближнего поля Vo уменьшился в 1000 раз (рис. 6б).

Теперь придется включить «компенсирующую» катушку L с добротностью значительно более 1000 и настроить антенну в резонанс. Тогда из-за большой добротности напряжение на цилиндрах СС возрастет в 100 раз, а собственное поле Vo антенны между цилиндрами — в Q, т. е. в 1000 раз!

Таким образом мы имеем теоретическую вероятность того, что поле диполя Тесла равно полю диполя Герца. Что соответствует утверждению самого Г. Герца.

Тем не менее, все выглядит хорошо только в теории. Дело в том, что на практике высокой добротности катушки Q?1000 можно добиться только специальными мерами, да и то только в режиме приема. Следует также обратить особое внимание на повышенную концентрацию электромагнитной энергии в диполе Тесла (ЕН–антенне), которая расходуется на нагрев ближнего пространства и вызывает соответствующее падение КПД антенны в целом. Именно по этим причинам одиночный диполь Тесла при равных условиях подвеса имеет меньшее усиление, чем диполь Герца, хотя имеются и другие утверждения. Если диполь изготовить с немецкой педантичностью и американской уверенностью, может так оно и получится.

В связи с вышесказанным хочется отметить, что антенна Т. Харда — это не вымысел, это достаточно высоко отработанная модель, но которую еще можно и нужно усовершенствовать. Здесь, как говорится, «КОНЬ НЕ ВАЛЯЛСЯ». Пусть Тед не смог донести до нас истинной теории работы его индивидуальной разработки. В конце концов, это всего лишь Т. Хард с усовершенствованной конструкцией диполя Н. Тесла. Да это и не важно! Важно то, что есть возможности идти дальше по этому пути. Пусть следующая разработка антенны будет от Иванова, Сидорова или Петрова!

В тексте были использованы материалы экспериментов. К. Максвелла, работы Н. Тесла, интересные статьи профессора В. Т. Полякова, издания таких известных авторов, как Г. З. Айзенберг, К. Ротхаммель, З. Беньковский, Э. Липинский, материалы Интернет и разработки Т. Харда.

73! UA9LBG & Радио-Вектор-Тюмень
E-mail: [email protected] & [email protected]

Сама идея устройства для получения дармовой энергии из эфира неизменно была очень востребована. Не только аматёры, но и многие именитые учёные всерьёз и небезрезультатно занимались этим вопросом. Нынче не стало меньше желающих разработать подобную установку и её сделать самому. Энергию из эфира для дома сегодня можно попытаться получить, используя простые и доступные схемы.

Наука не даёт вразумительного определения ни полю, ни энергии. Зато она ясно формулирует - энергия не берётся из ниоткуда и никуда не девается. Пытаясь добывать «энергию из ничего», мы можем только стараться «встраиваться» в процесс её естественного преобразования из одних видов в другие.

Энергия определяется полезной работой, а поле - пространственными характеристиками влияния его источника. И статический электрический заряд, и динамический магнитный эффект вокруг проводника с током, и тепло нагретого тела считаются полями.

Любое поле может выполнить полезную работу, следовательно, передать часть своей энергии. Именно это свойство побуждает искать источники дармовой энергии в различных полях. Считается, что такой энергии существует в разы больше, чем в освоенных человечеством традиционных источниках.

Например, мы умеем использовать энергию гравитации огромной Земли, но не умеем её извлекать из притяжения малюсенького камня. Она слишком незначительная, чтобы это имело смысл, но практически неисчерпаема. Если придумать некий способ её извлечения из камешка, мы получим новый источник энергии.

Примерно этим занимаются исследователи и разработчики всех видов и мастей в попытках извлечь «энергию из ничего». То поле, из которого различные изыскатели стремятся научиться добывать энергетический ресурс, они называют эфир.

Эфир и его свойства

Многие его разработки считаются утраченными ещё со времени его смерти . Одни из них известны исключительно как принципы, другие - всего лишь в общих чертах. Тем не менее, многие нынешние конструкторы пытаются сегодня воспроизвести открытия и устройства Тесла, пользуясь уже современными научными и технологическими открытиями.

Большинство идей Тесла базируются на извлечении её из полей, формируемых взаимодействием Земли со своей ионосферой. Эта система рассматривается как большой конденсатор, в котором одна пластина - Земля, а другая - её ионосфера, облучаемая космическими лучами. Как и любой конденсатор, такая система постоянно накапливает заряд.

А разрабатываемые по идеям Тесла различные самодельные устройства предназначены для извлечения этой энергии.

Нынешние и классические разработки

Современные открытия и технологические разработки предоставляют широкое поле деятельности в получении «холодного электричества». Кроме устройств по идеям Тесла, сегодня широко распространены такие разработки для получения «энергии из пустоты», как:

Все эти способы имеют своих приверженцев, но большинство из них довольно ресурсоёмкие и затратные. Немаловажно и то, что они требуют глубоких специальных знаний и изобретательности. Всё это делает подобное конструирование в домашних условиях затруднительным. Энергия из эфира своими руками может быть получена с помощью несложных и доступных схем. Их реализация не потребует глубоких знаний или больших издержек, но некоторая подгонка, настройка и расчёты всё же понадобятся.

Не все такие разработки можно назвать извлекающими именно «эфирную энергию» . С точки зрения отсутствия расхода ресурсов на выработку электроэнергии, их по праву можно назвать извлекающими «энергию из ничего». Энергоносители этих систем не разрушаются при передаче энергии - отдавая её, они тут же её снова накапливают. Сама же система может вырабатывать электроэнергию если и не вечно, то, по крайней мере, очень-очень долго.

Энергия воздушной тяги

Эта идея - типичный пример такого устройства. Она не является в строгом смысле слова способом извлечь энергию из эфира. Это, скорее, способ её простого, дешёвого и длительного получения.

Для его реализации понадобится высокая труба, 15 метров и более. Такая труба ставится вертикально. Нижнее и верхнее отверстия должны быть открыты. Внутри неё устанавливаются электродвигатели с пропеллерами соответствующего диаметра, которые должны легко крутиться вместе с ротором. Восходящий поток воздуха вращает лопасти и роторы электродвигателей, в статоре вырабатывается электроэнергия.

Незамысловатая домашняя мини-электростанция

Одно из самых элементарных устройств можно сделать самостоятельно из кулера от компьютера (рис.1). В нём используется такая современная разработка, как неодимовые магниты.

Для его изготовления нужно:

Такая электростанция позволяет работать подключённой к ней маленькой лампочке. Взяв мотор побольше и более сильные магниты, можно получить больше электроэнергии.

Применение магнитов и маховика

Возможности подобной электростанции значительно увеличиваются при использовании инерции тяжёлого маховика. Упрощённая модель такой конструкции показана на рис. 2.На сегодняшний день существует масса разработок - в том числе и запатентованных подобных конструкций с горизонтальным и вертикальным расположением маховика. Все они имеют общую схему устройства.

Основная деталь - барабан маховика, по окружности которого расположены довольно мощные неодимовые магниты. По окружности движения ротора-маховика расположены несколько электрических катушек, выполняющих роль электромагнита и генератора электричества (статора). В комплект также входит аккумулятор и устройство переключения направления подачи напряжения.

Будучи один раз запущен, маховик, вращаясь по кругу, возбуждает своими магнитами электромагнитное поле в катушках. Это приводит к появлению в проводнике электрического тока, который подаётся для зарядки аккумулятора. Периодически часть вырабатываемой электроэнергии используется для подталкивания маховика. Заявляемый разработчиками КПД такого механизма составляет 92%.

В обоих этих устройствах энергия вырабатывается за счёт инерции вращения и сравнительно недавно разработанных мощных магнитов. Понимая принцип работы устройства, можно попытаться сделать его самостоятельно дома. По словам конструкторов, с помощью него можно получать до 5 кВт*ч полезной мощности.

Простой генератор Тесла

Сегодняшнее воздушное пространство значительно сильнее ионизировано, чем во времена Тесла.

Основание тому - существование огромного количества линий электропередач, источников радиоволн и прочих причин ионизации. Поэтому попытка получить электричество из эфира своими руками с помощью простейших конструкций по идеям Тесла может быть весьма эффективной.

Начинать самостоятельные эксперименты лучше с доступных для изготовления в домашних условиях приспособлений. Одно из них - простейший трансформатор Тесла. Это устройство позволяет буквально «получать энергию из воздуха». Его принципиальная схема изображена на рис. 3.В этой установке используются две пластины. Одна закапывается в землю, а другая поднимается на некоторую высоту над её поверхностью.

На пластинах, как и в конденсаторе, накапливаются потенциалы противоположного знака. Само устройство состоит из стартового источника питания (аккумулятор 12 В), подключённого через разрядник к первичной обмотке трансформатора, и параллельно включённого конденсатора. Накопившийся заряд пластин снимается со вторичной обмотки трансформатора.

Эта конструкция представляет опасность тем, что фактически моделирует возникновение атмосферного разряда молнии, и работы с такой установкой нужно проводить с соблюдением всех мер безопасности.

С помощью подобной конструкции можно получить небольшое количество электричества. Для более серьёзных целей потребуется использовать более сложные и дорогостоящие в реализации схемы. В этом случае также не обойтись без достаточных знаний физики и электроники.

Устройство разработки Стивена Марка

Эта установка, созданная электриком и изобретателем Стивеном Марком, предназначена для получения уже довольно значительного количества холодного электричества (рис.4). С помощью него можно питать как лампы накаливания, так и сложные бытовые устройства - электроинструмент, телерадиоаппаратуру, электродвигатели. Он назвал его Тороидальный Генератор Стивена Марка (TPU). Изобретение подтверждено патентом США от 27 июля 2006 года.

Принцип его действия основан на создании магнитного вихря, резонансных частот и ударов тока в металле. В отличие от многих других подобных устройств, будучи уже запущенным, генератор не требует подпитки и может работать неограниченное количество времени. Он был воссоздан много раз различными испытателями, которые подтверждают его работоспособность.

Существуют несколько конструкций этого устройства. Принципиально они между собой не разнятся, есть некоторые отличия в реализации схемы.

Здесь приведена схема и конструкция 2-частотного TPU. В основу принципа его действия положено столкновение вращающихся магнитных полей. Устройство имеет вес меньше 100 г и довольно простую конструкцию. Оно включает в себя такие компоненты:

Внутрення кольцеобразная основа (рис.5) выполняет роль стабильной платформы, вокруг которой расположены все другие катушки. Материал для изготовления кольца - пластик, фанера, мягкий полиуретан.

Размеры кольца:

  • ширина: 25 мм;
  • внешний диаметр: 230 мм;
  • внутренний диаметр: 180 мм;
  • толщина: 5 мм.

Внутренняя коллекторная катушка может быть сделана из 1–3 витков 5 параллельных многожильных проводов-литцендратов. Для намотки витков можно также использовать обычный одножильный провод с диаметром жилы 1 мм. Схематический вид после изготовления представлен на рис. 6.

Внешняя коллекторная катушка , она же - выходной коллектор двухполярного типа. Для его намотки можно использовать тот же провод, что и для управляющих катушек. Им покрывается вся доступная поверхность.

Каждая из катушек управления (рис.7) - плоского типа, по 90 градусов для установки вращающегося магнитного поля.

Чтобы сделать катушки с одинаковым количеством витков, необходимо до наматывания отрезать 8 проводов немного длиннее метра. Выводы поможет различать разный цвет проводов. Каждая катушка имеет 21 виток двухпроводного стандартного одножильного провода сечением 1 мм со стандартной изоляцией.

Выводы с наконечниками (рис. 7) - это два вывода внутренней коллекторной катушки.

Обязательной является установка общей обратной земли и 10-микрофарадного полиэстрового конденсатора, без которого на всё оборудование будут отрицательно воздействовать токи и возвращаемое излучение.

Схема соединений делится на 4 секции:

  • входа;
  • управления;
  • катушек;
  • выхода.

Секция входа предназначена для предоставления интерфейса к генератору прямоугольного сигнала

и выдачи синхронизированных прямоугольных волн подходящим образом. Это обеспечивается с помощью КМОП-мультивибратора.

Для реализации секции управления МОСФИТами (MOSFET) лучшее решение - стандартный интерфейс IRF7307, предлагаемый конструктором.

Как видно из последней модели, человеку без специального образования и навыков работы с физическими устройствами и приборами собрать такую конструкцию дома будет достаточно сложно.

Существует множество схем и описаний подобных устройств других авторов. Капанадзе, Мельниченко, Акимов, Романов, Дональд (Дон) Смит хорошо известны всем желающим найти способ получения энергии из ничего. Многие конструкции довольно простые и недорогие для того, чтобы их сделать и самому получить энергию из эфира для дома.

Вполне возможно, что многим таким аматёрам удастся практически достоверно узнать, как получить электричество в домашних условиях.

И вот, наконец, дошли руки. После сборок мелких катушек решил замахнуться на новую схему, более серьезную и сложную в настройке и работе. Перейдем от слов к делу. Полная схема выглядит так:

Работает по принципу автогенератора. Прерыватель пинает драйвер UCC27425 и начинается процесс. Драйвер подает импульс на GDT (Gate Drive Transformator - дословно: трансформатор, управляющий затворами) с GDT идут 2 вторичные обмотки включенные в противофазе. Такое включение обеспечивает попеременное открытие транзисторов. Во время открытия транзистор прокачивает ток через себя и конденсатор 4,7 мкФ. В этот момент на катушке образуется разряд, и сигнал идет по ОС в драйвер. Драйвер меняет направление тока в GDT и транзисторы меняются (который был открытым - закрывается, а второй открывается). И этот процесс повторяется до тех пор, пока идет сигнал с прерывателя.

GDT лучше всего мотать на импортном кольце - Epcos N80. Обмотки мотаются в соотношении 1:1:1 или 1:2:2. В среднем порядка 7-8 витков, при желании можно рассчитать. Рассмотрим RD цепочку в затворах силовых транзисторов. Эта цепочка обеспечивает Dead Time (мертвое время). Это время когда оба транзистора закрыты. То есть один транзистор уже закрылся, а второй еще не успел открыться. Принцип такой: через резистор транзистор плавно открывается и через диод быстро разряжается. На осциллограмме выглядит примерно так:

Если не обеспечить dead time то может получиться так, что оба транзистора будут открыты и тогда обеспечен взрыв силовой.

Идем дальше. ОС (обратная связь) выполнена в данном случае в виде ТТ (трансформатора тока). ТТ наматывается на ферритовом кольце марки Epcos N80 не менее 50 витков. Через кольцо продергивается нижний конец вторичной обмотки, который заземляется. Таким образом высокий ток со вторичной обмотки превращается в достаточный потенциал на ТТ. Далее ток с ТТ идет на конденсатор (сглаживает помехи), диоды шоттки (пропускают только один полупериод) и светодиод (выполняет роль стабилитрона и визуализирует генерацию). Чтобы была генерация необходимо также соблюдать фразировку трансформатора. Если нет генерации или очень слабая - нужно просто перевернуть ТТ.

Рассмотрим отдельно прерыватель. С прерывателем конечно я попотел. Собрал штук 5 разных... Одни пучит от ВЧ тока, другие не работают как надо. Далее расскажу про все прерыватели, которые делал. Начну пожалуй с самого первого - на TL494 . Схема стандартная. Возможна независимая регулировка частоты и скважности. Схема ниже может генерировать от 0 до 800-900 Гц, если поставить вместо 1 мкФ конденсатор 4,7 мкФ. Скважность от 0 и до 50. То что нужно! Однако есть одно НО. Этот ШИМ контроллер очень чувствителен к ВЧ току и различным полям от катушки. В общем при подключении к катушке, прерыватель просто не работал, либо все по 0 либо CW режим. Экранирование частично помогло, но не решило проблему полностью.

Следущий прерыватель был собран на UC3843 очень часто встречается в ИИП, особенно АТХ, оттуда, собственно, его и взял. Схема тоже неплохая и не уступает TL494 по параметрам. Здесь возможна регулировка частоты от 0 до 1кГц и скважность от 0 до 100%. Меня это тоже устраивало. Но опять эти наводки с катушки все испортили. Здесь даже экранирование нисколько не помогло. Пришлось отказаться, хотя собрал добротно на плате...

Надумал вернуться к дубовым и надежным, но малофункциональным 555 . Решил начать с burst interrupter. Суть прерывателя заключается в том, что он прерывает сам себя. Одна микросхема (U1) задает частоту, другая (2) длительность, а третья (U3) время работы первых двух. Все бы ничего, если бы не маленькая длительность импульса с U2. Этот прерыватель заточен под DRSSTC и может работать с SSTC но мне это не понравилось- разряды тоненькие, но пушистые. Далее было несколько попыток увеличить длительность, но они не увенчались успехом.

Схемы генераторов на 555

Тогда решил изменить принципиально схему и сделать независимую длительность на конденсаторе, диоде и резисторе. Возможно многие посчитают эту схему абсурдной и глупой, но это работает. Принцип такой: сигнал на драйвер идет до тех пор пока конденсатор не зарядится (с этим думаю никто не поспорит). NE555 генерирует сигнал, он идет через резистор и конденсатор, при этом если сопротивление резистора 0 Ом, то идет только через конденсатор и длительность максимальна (на сколько хватает емкости) не зависимо от скважности генератора. Резистор ограничивает время заряда, т.е. чем больше сопротивление, тем меньшей времени будет идти импульс. На драйвер идет сигнал меньшей длительностью, но тоже частоты. Разряжается конденсатор быстро через резистор (который на массу идет 1к) и диод.

Плюсы и минусы

Плюсы : независимая от частоты регулировка скважности, SSTC никогда не уйдет в CW режим, если подгорит прерыватель.

Минусы : скважность нельзя увеличивать "бесконечно много", как например на UC3843 , она ограничена емкостью конденсатора и скважностью самого генератора (не может быть больше скважности генератора). Ток через конденсатор идет плавно.

На последнее не знаю как драйвер реагирует (плавную зарядку). С одной стороны драйвер также плавно может открывать транзисторы и они будут сильнее греться. С другой стороны UCC27425 - цифровая микросхема. Для нее существует только лог. 0 и лог. 1. Значит пока напряжение выше порогового - UCC работает, как только опустилось ниже минимального - не работает. В этом случае все работает в штатном режиме, и транзисторы открываются полностью.


Перейдем от теории к практике

Собирал генератор Тесла в корпус от АТХ. Конденсатор по питанию 1000 мкф 400в. Диодный мост из того же АТХ на 8А 600В. Перед мостом поставил резистор 10 Вт 4,7 Ом. Это обеспечивает плавный заряд конденсатора. Для питания драйвера поставил трансформатор 220-12В и еще стабилизатор с конденсатором 1800 мкФ.

Диодные мосты прикрутил на радиатор для удобства и для отвода тепла, хотя они почти не греются.

Прерыватель собрал почти навесом, взял кусок текстолита и канцелярским ножом вырезал дорожки.

Силовая была собрана на небольшом радиаторе с вентилятором, позже выяснилось, что этого радиатора вполне достаточно для охлаждения. Драйвер смонтировал над силовой через толстый кусок картона. Ниже фото почти собранной конструкции генератора Тесла, но находящейся на проверке, измерял температуру силовой при различных режимах (видно обычный комнатный термометр, прилепленный к силовой на термопласту).

Тороид катушки собран из гофрированной пластиковой трубы диаметром 50 мм и обклеенным алюминиевым скотчем. Сама вторичная обмотка намотана на 110 мм трубе высотой 20 см проводом 0,22 мм около 1000 витков. Первичная обмотка содержит аж 12 витков, сделал с запасом, дабы уменьшить ток через силовую часть. Делал с 6 витками в начале, результат почти одинаков, но думаю не стОит рисковать транзисторами ради пары лишних сантиметров разряда. Каркасом первички служит обычный цветочный горшок. С начала думал что не будет пробивать если вторичку обмотать скотчем, а первичку поверх скотча. Но увы, пробивало... В горшке конечно тоже пробивало, но здесь скотч помог решить проблему. В общем готовая конструкция выглядит так:

Ну и несколько фоток с разрядом

Теперь вроде бы все.

Ещё несколько советов: не пытайтесь сразу воткнуть в сеть катушку, не факт что она сразу заработает. Постоянно следите за температурой силовой, при перегреве может бабахнуть. Не мотайте слишком высокочастотные вторички, транзисторы 50b60 могут работать максимум на 150 кГц по даташиту, на самом деле немного больше. Проверяйте прерыватели, от них зависит жизнь катушки. Найдите максимальную частоту и скважность, при которой температура силовой стабильная длительное время. Слишком большой тороид может тоже вывести из строя силовую.

Видео работы SSTC

P.S. Транзисторы силовые использовал IRGP50B60PD1PBF. Файлы проекта . Удачи, с вами был [)еНиС !

Обсудить статью ТЕСЛА ГЕНЕРАТОР

Загрузка...