Автомобильный портал - ZadonskVokzal

Индикатор напряжения аккумулятора на LM3914. Простейший индикатор уровня заряда батареи Определение полярности светодиода

В любой технике в качестве отображения режимов работы используют светодиоды. Причины очевидны – низкая стоимость, сверхмалое энергопотребление, высокая надёжность. Поскольку схемы индикаторов очень просты, нет необходимости в покупке фабричных изделий.

Из обилия схем, для изготовления указателя напряжения на светодиодах своими руками, можно подобрать наиболее оптимальный вариант. Индикатор можно собрать за пару минут из самых распространённых радиоэлементов.

Все подобные схемы по назначению делят на индикаторы напряжения и индикаторы тока.

Работа с сетью 220В

Рассмотрим простейший вариант – проверка фазы.

Эта схема представляет собой световой индикатор тока, которым оснащают некоторые отвёртки. Такое устройство даже не требует внешнего питания, поскольку разность потенциала между фазовым проводом и воздухом или рукой достаточна для свечения диода.

Для отображения сетевого напряжения, например, проверки наличия тока в разъёме розетки, схема ещё проще.

Простейший индикатор тока на светодиодах 220В собирается на ёмкостном сопротивлении для ограничения тока светодиода и диода для защиты от обратной полуволны.

Проверка постоянного напряжения

Нередко возникает необходимость прозвонить низковольтную цепь бытовых приборов, либо проверить целостность соединения, например, провод от наушников.

В качестве ограничителя тока можно использовать маломощную лампу накаливания либо резистор на 50-100 Ом. В зависимости от полярности подключения загорается соответствующий диод. Этот вариант подходит для цепей до 12В. Для более высокого напряжения потребуется увеличить сопротивления ограничивающего резистора.

Индикатор для микросхем (логический пробник)

Если возникает необходимость проверить работоспособность микросхемы, поможет в этом простейший пробник с тремя устойчивыми состояниями. При отсутствии сигнала (обрыв цепи) диоды не горят. При наличии логического ноля на контакте возникает напряжение около 0,5 В, которое открывает транзистор Т1, при логической единице (около 2,4В) открывается транзистор Т2.

Такая селективность достигается, благодаря различным параметрам используемых транзисторов. У КТ315Б напряжение открытия 0,4-0,5В, у КТ203Б – 1В. При необходимости можно заменить транзисторы другими с аналогичными параметрами.

Аккумуляторы напряжением 12 В очень популярны (обычно это герметичный свинцово-кислотный аккумулятор емкостью 7 Ач). Я несколько раз пытался создать современный измеритель уровня заряда (SOC) на заказ, который бы отображал уровень напряжения с помощью светодиодов. Однако каждому клиенту требуется своя функциональность от подобного устройства, причем отличия зачастую заключаются в требовании к отображению минимального и максимального значения напряжения.

Если нужно обеспечить подачу звукового предупреждения при достижении низкого уровня напряжения, тогда необходимо проконтролировать три уровня напряжения. При стандартном методе используются потенциометры для регулировки, однако если существует необходимость подачи второго и третьего звукового предупреждения, тогда этот метод становится неприемлемым.

В процессе тестирования выяснилось, что диапазон тока в цепях составляет от 45 мА до 150 мА. Стандартное устройство контроля аккумуляторов на базе LM3914 выполняет разряд батареи емкостью 7 Ач в течение 46 часов.

Цель данного проекта – создать индикатор аккумулятора со следующими компонентами и характеристиками:

  • Светодиодный индикатор
  • Регулируемый максимальный уровень напряжения
  • Регулируемый минимальный уровень напряжения
  • 3 регулируемых уровня порога срабатывания сигнализации (обычно 50%, 30%, 20%)
  • Звуковая сигнализация не должна раздражать и иметь функцию отключения звука
  • Минимальное количество кнопок
  • Низкое энергопотребление.

Для этого проекта я применил микроконтроллер ATmega328P micro.

Шаг 1: Светодиодный индикатор

В проекте используется простой и удобный светодиодный индикатор. Шкальный индикатор имеет 6 светодиодов, которые указывают различный уровень напряжения:

  • Светодиод 6 - 100%
  • Светодиод 5 - 80%
  • Светодиод 4 - 60%
  • Светодиод 3 - 40%
  • Светодиод 2 - 20%
  • Светодиод 1 - 0%

Светодиод 0% программно связан с минимальным уровнем напряжения.
Светодиод 100% программно связан с максимальным уровнем напряжения.

Шкала отображения между 0% и 100% - линейная. При уровне 0% будет светиться только Светодиод 1, и при 100% будут светиться все светодиоды.

Для сохранения энергии светодиодный индикатор не включен постоянно. Для включения индикатора нужно нажать кнопку, причем через 30 секунд произойдет автоматическое отключение индикатора.

Шаг 2: Напряжение и уровни сигнализации

Для точного измерения напряжения необходимо понизить напряжение аккумулятора. Для этой цели используется делитель напряжения, который понижает напряжение до величины 1.1 В с помощью резисторов номиналом 1 мОм и 82 кОм. Поскольку внутренний источник опорного напряжения АЦП настроен на напряжение 1.1 В, то это позволит сравнивать и измерять максимальное напряжение до 14.45 В.

Необходимо проконтролировать 5 уровней напряжения:

  • Максимальный уровень напряжения
  • Минимальный уровень напряжения
  • 1 уровень сигнализации пониженного напряжения
  • 2 уровень сигнализации пониженного напряжения
  • 3 уровень сигнализации пониженного напряжения

Вместо использования потенциометров я решил применить необычный метод. С помощью программной процедуры я занес данные об уровнях напряжения и сохранил различные результаты аналогово-цифрового преобразования в память EEPROM.

Светодиоды индикатора отображают программную последовательность. Для включения светодиодов и входа в режим программирования используется только одна кнопка.

Шаг 3: Звуковая сигнализация

Для подачи звукового сигнала используется стандартная пьезопищалка. Система предусматривает три уровня подачи аварийного звукового сигнала:

  • Сигнализация 1, подает сигнал один раз в течение нескольких секунд. Данный тип звуковой сигнализации может быть отключен.
  • Сигнализация 2, подает сигнал два раза в течение нескольких секунд. Данный тип звуковой сигнализации может быть отключен.
  • Сигнализация 3, подает сигнал три раза в течение нескольких секунд. Данный тип звуковой сигнализации не может быть отключен.

Если звуковая сигнализация выключена, то можно активировать функцию автоматического сброса для повторного включения сигнализации, когда батарея полностью заряжена. Я использовал функцию сброса, которая повторно активирует звуковую сигнализацию, если уровень напряжения аккумулятора превышает 60%.

Шаг 4: Минимальное количество кнопок

Все функции выполняются с помощью одной кнопки.

Индикатор

Нажмите кнопку для включения индикатора. Светодиодный индикатор включится и автоматически отключится через 30 секунд.

Сигнализация

Кнопка позволяет отключить звук в режиме Сигнализация 1 и 2.

Программирование

Для входа в режим программирования нажмите и удерживайте кнопку в течение 5 секунд при подаче питания на устройство.

Шаг 5: Низкое энергопотребление

Существует несколько способов снизить энергопотребление устройства:

Индикатор

Светодиодный индикатор не включен постоянно (его можно включить с помощью кнопки, после чего через 30 секунд произойдет автоматическое отключение). В результате этого можно сэкономить 120 мА.

Напряжение питания микроконтроллера

Микроконтроллер ATmega328P работает от напряжения 5 В и потребляет значительно больше, чем от напряжения 3.3 В. Поэтому я оптимизировал напряжение до уровня 3.3 В с помощью понижающего стабилизатора.

Стабилизатор напряжения

Стандартный стабилизатор 7805 потребляет ток около 20 мА. При использовании ИС 78L05, потребляемый ток составляет 3.5 мА. Однако при использовании LP2950 3.3 В потребляемый ток падает до 0.1 мА.

Подбор тактовой частоты

Судя из даташита ATm ega328P ток потребления можно снизить с 10 мА до 1 мА, выбрав внутренний тактовый генератор на 8 МГц, по сравнению со стандартной частотой 16 МГц.

Я выбрал для проекта тактовую частоту 8 МГц для наилучшего соотношения скорость/производительность. Однако для этого необходимо перепрограммировать регистры конфигурации ATm ega328P , используя .

Примечание:
Если вы не хотите менять фьюзы, тогда микроконтроллер будет работать на частоте 16 МГц. Пожалуйста, измените значения delay() и Millis() на фактические значения в мс.

Режим сна

Переводя микроконтроллер AtMega328P в режим сна, вы также сможете сэкономить энергию. В этом режиме большинство микроконтроллеров отключает интерфейсные блоки, что позволяет уменьшить ток потребления до 0.001 мА. Однако в данном режиме микроконтроллер уже не работает, а в нашем случае, не измеряет напряжение.

Сторожевой таймер используется для пробуждения микроконтроллера из режима сна. Настройка таймера на пробуждение микроконтроллера каждый 8 секунд приведет к значительному снижению потребления энергии.

Результаты энергосбережения

При использовании вышеуказанных методик энергопотребление схемы удалось снизить с 80 мА до 0.12 мА, когда устройство находилось в режиме сна. В среднем, схема потребляет 0.28 мА.

Без использования энергосберегающих функций схема разряжает аккумулятор емкостью 7 Ач за, приблизительно, 2.8 дня. При использовании энергосберегающих функций тот же аккумулятор разрядится через 3.5 года.

Шаг 6: Схема

Для разработки печатной платы я использовал бесплатную версию . Все компоненты, за исключением нажимной кнопки, устанавливаются на печатную плату. Сборка устройства не вызывает проблем, за исключением светодиодов. Их необходимо точно расположить на одинаковом расстоянии.

Поскольку для питания схемы выбрано напряжение 3.3 В, некоторые пьезо пищалки, рассчитанные на напряжение 5 В, не работают. Поэтому пищалку нужно подключить к источнику напряжения 12 В и управлять включением через транзистор. Подберите номинал резистора R6 для получения хорошего звука.

Шаг 7: Калибровка устройства

Для калибровки устройства необходимо использовать источник регулируемого напряжения и мультиметр.

Вход в режим калибровки

Нажмите и удерживайте кнопку
- Подключите устройство к источнику электропитания
- Через 5 секунд устройство издаст непрерывный звуковой сигнал
- Отпустите кнопку
- Устройство издаст 6 звуковых сигналов (устанавливается максимальное напряжение)
- При этом загорится самый верхний светодиод
- Устройство перешло в режим калибровки. Для выхода из режима отключите питание без нажатия кнопки.
- Отрегулируйте выход источника питания на максимальное выходное напряжение, отображаемое на светодиодном индикаторе (обычно 12.7 В)
- Нажмите кнопку
- Устройство издаст 5 звуковых сигналов (устанавливается минимальное напряжение)
- При этом загорится самый нижний светодиод
- Отрегулируйте выход источника питания на минимальное выходное напряжение, отображаемое на светодиодном индикаторе (обычно 11.8 В)
- Нажмите кнопку
- Устройство издаст 4 звуковых сигнала (установка сигнала аварии Alarm 1)
- При этом будут гореть 4 нижних светодиода
- Отрегулируйте выход источника питания на уровень напряжения Alarm 1 (обычно 12.4 В)
- Нажмите кнопку
- Устройство издаст 3 звуковых сигнала (установка сигнала аварии Alarm 2)
- При этом будут гореть 3 нижних светодиода
- Отрегулируйте выход источника питания на уровень напряжения Alarm 2 (обычно 12.2 В)
- Нажмите кнопку
- Устройство издаст 2 звуковых сигнала (установка сигнала аварии Alarm 3)
- При этом будут гореть 2 нижних светодиода
- Отрегулируйте выход источника питания на уровень напряжения Alarm 3 (обычно 12.0 В)
- Нажмите кнопку
- Далее устройство издаст 1 звуковой сигнал, который означает конец процедуры калибровки. При этом светодиодный индикатор загорится на 30 секунд.

Все запрограммированные значения хранятся в памяти EEPROM, поэтому калибровка проводится только один раз.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
IC1 МК AVR 8-бит

ATmega328P

1 В блокнот
IC2 Линейный регулятор

LP2950-33

1 В блокнот
Q1 Биполярный транзистор

MMBT2222A

1 В блокнот
LED1-LED3 Светодиод Зеленый 3 В блокнот
LED4 Светодиод Желтый 1 В блокнот
LED5, LED6 Светодиод Красный 2 В блокнот
С1, С2 Конденсатор 0.1 мкФ 2 В блокнот
С3, С4 Конденсатор 2 В блокнот
R1 Резистор

1 МОм

1 1% В блокнот
R2 Резистор

Устройство представляет собой светодиодный вольтметр (индикатор напряжения) 12В аккумулятора, с применением широко известной микросхемы LM3914 (даташит).

Данное устройство мне было необходимо для того, чтобы я знал когда автомобильный аккумулятор полностью зарядится от зарядного устройства. Т.к. зарядка была старого типа и на ней не было никаких стрелочных или цифровых индикаторов для измерения напряжения.

В качестве светодиодного столбикового индикатора (бара) я выбрал HDSP-4832 с 10 светодиодами трех разных цветов: три красных, четыре желтых и три зеленых.

Для правильной индикации напряжения, нужно определиться с нижним и верхним уровнем измеряемых напряжений, чтобы на индикаторе соответственно при данных уровнях загорались первый и последние светодиоды (полоски).

Для 12В автомобильного аккумулятора, были выбраны следующие диапазоны: первый светодиод загорался при напряжении 10В, а последний при напряжении 13.5В, т.о. шаг индикации напряжения получился 0.35В на один светодиод. Естественно, вы можете установить и другие напряжения, при помощи двух подстроечных резисторов. Это дает возможность использовать данный индикатор для измерения напряжения, например NiCd или NiMH аккумуляторов. Границы напряжения в данном случае устанавливаются в V min = 0.9 * N cells and V max = 1.45 * N cells , где N cells - количество "банок" аккумулятора. Плюс между + и - аккумуляторов должен быть помещен мощный резистор рассчитанный на ток не менее 0.5А для имитации реальной нагрузки.

Микросхема LM3914 может работать в двух режимах: режим "точка" - при котором загорается только один светодиод, и "столбиковый" режим, при котором загорается несколько светодиодов по нарастающей. Данная схема работает в "столбиковом" (bar) режиме, для этого 9 вывод микросхемы подключен к плюсу источника питания.

При работе в режиме bar, соответственно и увеличивается энергопотребление LM3914. Когда все 10 сегментов индикатора горят, то LM3914 потребляет почти в 10 раз больше, чем если бы горел только один светодиод (сегмент). Для предотвращения выгорания м/с LM3914 необходимо следить, чтобы ток светодиодов не превысил максимально допустимый.

Максимальная рассеиваемая мощность микросхемы не должна превышать 1365 мВт. И если предположить, что подводимое максимальное напряжение составит 14.4В, то максимально возможный ток составит I = P/V = 1.365/14.4 = 94.8мА. Т.о. ток, каждого сегмента индикатора не должен превышать 94.8/10=9.5мА. В схеме, сопротивление резистора R3 (4.7 кОм) задает максимальный ток светодиодов. Ток светодиода примерно в 10 раз больше тока, который проходит через данный резистор I R3 = 1.25 / 4700 = 266 мкА. Т.о. ток на каждый светодиод ограничен значением 2.6 мА, что намного меньше допустимого.

Входной каскад: для снятия показаний входного напряжения (и им же питается схема) в схеме применен делитель напряжения 1:2, подсоединенный к выводу 5 микросхемы. Делитель состоит из двух резисторов номиналом 10 кОм и т.о. напряжение, снимаемое с делителя находится в диапазоне от 5В до 6.75В, в то время как входное напряжение будет от 10В до 13.5В. Эти же значения будут использоваться для калибровки LM3914.

Принципиальная схема индикатора

Схема состоит из двух элементов: отдельно схемы контроля и отдельно плата индикатора. Между собой они соединяются при помощи 11-ти контактного разъема.

Основные задающие элементы схемы:
R1 и R2 - делитель напряжения
R3 и R4 - ограничение тока светодиодов и установка верхней границы напряжения
R5 - установка нижней границы напряжения

Про R1, R2 и R3 я рассказывал выше. Теперь разберем R4, который устанавливает верхний порог (вывод 6 м/с):
На выводах микросхемы 6 и 7 необходимо установить напряжение на уровне 6.75В (что является входным напряжением 13.5В после делителя, в том случае, если аккумулятор заряжен полностью). Зная значение тока проходящего через R3, а также прибавив сюда ток "error current" с 8 вывода микросхемы (120мкА), мы можем рассчитать сопротивление R4:
6.75В = 1.25В + R4(120мкА+266мкА) <=>
R4 = (6.75 - 1.25)/(386мкА) <=>
R4 = 14.2кОм и больше (мы выбираем подстроечный резистор 22кОм)
С подстроечным резистором 22 кОм мы можем регулировать напряжение на выводе 7 в диапазоне от 1.25В до 9.74В, что дает возможность задавать верхнюю границу напряжения от 2.5В до 19.5В.

Сопротивлением R5 устанавливается нижняя граница напряжения:
Подставив в формулу V O = V I * R B /(R A + R B) следующие значения:
R A = 10 * 1К внутренние резисторы LM3914
R B = R5
V I = верхняя граница напряжения 6.75В
V O = нижняя граница напряжения 5В
получим:
5 = 6.75 * R5/(R5 + 10K)
R5 = 28.5K и больше (мы выбираем подстроечный резистор 100кОм)

Печатная плата

Как уже было сказано выше, устройство состоит из двух компонентов, соответственно используется 2 разных печатных платы. Это дает возможность использовать выносную индикацию, например на панели авто.

В печатной плате получилась только одна перемычка (отмечена красным цветом).

Скачать проект в и печатные платы вы можете ниже

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
IC1 LED драйвер

LM3914

1 В блокнот
С1 Электролитический конденсатор 2.2 мкФ 25 В 1 В блокнот
R1, R2 Резистор

10 кОм

2 В блокнот
R3 Резистор

4.7 кОм

1 В блокнот
R4 Переменный резистор 22 кОм 1 В блокнот
R5 Переменный резистор 100 кОм 1 В блокнот
BAR1 Индикатор HDSP-4832 10
Загрузка...