Автомобильный портал - ZadonskVokzal

Изготовление простого стабилизатора тока и напряжения. Устройство, принцип работы импульсного стабилизатора напряжения Схема импульсного стабилизатора напряжения на 5 вольт

Здравствуйте. Предлагаю вниманию обзор интегрального линейного регулируемого стабилизатора напряжения (или тока) LM317 по цене 18 центов за штуку. В местном магазине такой стабилизатор стоит на порядок больше, поэтому меня и заинтересовал этот лот. Решил проверить, что продаётся по такой цене и оказалось, что стабилизатор вполне качественный, но об этом ниже.
В обзоре тестирование в режиме стабилизатора напряжения и тока, а также проверка защиты от перегрева.
Заинтересовавшихся прошу…

Немного теории:

Стабилизаторы бывают линейные и импульсные .
Линейный стабилизатор представляет собой делитель напряжения, на вход которого подаётся входное (нестабильное) напряжение, а выходное (стабилизированное) напряжение снимается с нижнего плеча делителя. Стабилизация осуществляется путём изменения сопротивления одного из плеч делителя: сопротивление постоянно поддерживается таким, чтобы напряжение на выходе стабилизатора находилось в установленных пределах. При большом отношении величин входного/выходного напряжений линейный стабилизатор имеет низкий КПД, так как большая часть мощности Pрасс = (Uin - Uout) * It рассеивается в виде тепла на регулирующем элементе. Поэтому регулирующий элемент должен иметь возможность рассеивать достаточную мощность, то есть должен быть установлен на радиатор нужной площади.
Преимущество линейного стабилизатора - простота, отсутствие помех и небольшое количество используемых деталей.
Недостаток - низкий КПД, большое тепловыделение.
Импульсный стабилизатор напряжения - это стабилизатор напряжения, в котором регулирующий элемент работает в ключевом режиме, то есть бо́льшую часть времени он находится либо в режиме отсечки, когда его сопротивление максимально, либо в режиме насыщения - с минимальным сопротивлением, а значит, может рассматриваться как ключ. Плавное изменение напряжения происходит благодаря наличию интегрирующего элемента: напряжение повышается по мере накопления им энергии и снижается по мере отдачи её в нагрузку. Такой режим работы позволяет значительно снизить потери энергии, а также улучшить массогабаритные показатели, однако имеет свои особенности.
Преимущество импульсного стабилизатора - высокий КПД, низкое тепловыделение.
Недостаток - бОльшее количество элементов, наличие помех.

Герой обзора:

Лот состоит из 10 микросхем в корпусе ТО-220. Стабилизаторы пришли в полиэтиленовом пакете, обмотанным вспененным полиэтиленом.






Сравнение с наверно самым известным линейным стабилизатором 7805 на 5 вольт в таком же корпусе.

Тестирование:
Подобные стабилизаторы выпускаются многими производителями, вот .
Расположение ножек следующее:
1 - регулировка;
2 - выход;
3 - вход.
Собираем простейший стабилизатор напряжения по схеме из руководства:


Вот что удалось получить при 3 положениях переменного резистора:
Результаты, прямо скажем так, не очень. Стабилизатором это назвать язык не поворачивается.
Далее я нагрузил стабилизатор 25 Омным резистором и картина полностью преобразилась:

Далее я решил проверить зависимость выходного напряжения от тока нагрузки, для чего задал входное напряжения 15В, подстроечным резистором выставил выходное напряжение около 5В, и выход нагрузил переменным 100 Омным проволочным резистором. Вот что получилось:
Ток более 0,8А получить не удалось, т.к. начало падать входное напряжение (БП слабый). В результате этого тестирования, стабилизатор с радиатором нагрелся до 65 градусов:

Для проверки работы стабилизатора тока, была собрана следующая схема:


Вместо переменного резистора я использовал постоянный, вот результаты тестирования:
Стабилизация по току тоже хорошая.
Ну и как обзор может быть без сжигания героя? Для этого я собрал снова стабилизатор напряжения, на вход подал 15В, выход настроил на 5В, т.е. на стабилизаторе упало 10В, и нагрузил на 0,8А, т.е. на стабилизаторе выделялось 8Вт мощности. Радиатор убрал.
Результат продемонстрировал на следующем видео:


Да, защита от перегрева тоже работает, сжечь стабилизатор не удалось.

Итог:

Стабилизатор вполне работоспособен и может быть использован как стабилизатор напряжения (при условии наличия нагрузки), так и стабилизатор тока. Также есть множество различных схем применения для увеличения выходной мощности, использования в качестве зарядного устройства для аккумуляторов и др. Стоимость сабжа вполне приемлемая, учитывая, что в оффлайне я могу купить такой минимум за 30 рублей, а в за 19 рублей, что существенно дороже обозреваемого.

На сём разрешите откланяться, удачи!

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +37 Добавить в избранное Обзор понравился +59 +88

LM2596 понижает входное (до 40 В) напряжение - выходное регулируется, ток 3 А. Идеален для светодиодов в машине. Очень дешёвые модули - около 40 рублей в Китае.

Компания Texas Instruments выпускает качественные, надежные, доступные и дешёвые, удобные в применении DC-DC контроллеры LM2596. Китайские заводы выпускают на её основе сверхдешёвые импульсные понижающие (stepdown) конвертеры: цена модуля на LM2596 примерно 35 рублей (вместе с доставкой). Я советую купить сразу партию в 10 штук - для них всегда найдётся применение, при этом цена опустится до 32 рублей, и меньше 30 рублей при заказе 50 штук. Подробнее о расчёте обвязки микросхемы, регулировке тока и напряжения, его применении и о некоторых минусах конвертера.

Типичный метод использования - стабилизированный источник напряжения. На основе этого стабилизатора легко сделать импульсный блок питания, я применяю её как простой и надёжный лабораторный блок питания, выдерживающий короткое замыкание. Они привлекательны постоянством качества (похоже, все они делаются на одном заводе - да и сложно сделать ошибки в пяти деталях), и полным соответствием даташиту и заявленным характеристикам.

Другая область применения - импульсный стабилизатор тока для питания мощных светодиодов . Модуль на этой микросхеме позволит вам подключить автомобильную светодиодную матрицу на 10 Ватт, дополнительно обеспечив защиту от КЗ.

Крайне рекомендую купить их десяток штук - обязательно пригодятся. Они по–своему уникальны - входное напряжение вплоть до 40 вольт, и требуется лишь 5 внешних компонентов. Это удобно - можно поднять напряжение на шине электропитания умного дома до 36 вольт, уменьшив сечение кабелей. В точках потребления ставим такой модуль и настраиваем его на нужные 12, 9, 5 вольт или сколько понадобится.

Рассмотрим их подробнее.

Характеристики микросхемы:

  • Входное напряжение - от 2.4 до 40 вольт (до 60 вольт в версии HV)
  • Выходное напряжение - фиксированное либо регулируемое (от 1.2 до 37 вольт)
  • Выходной ток - до 3 ампер (при хорошем охлаждении - до 4.5А)
  • Частота преобразования - 150кГц
  • Корпус - TO220-5 (монтаж в отверстия) либо D2PAK-5 (поверхностный монтаж)
  • КПД - 70-75% на низких напряжениях, до 95% на высоких
  1. Источник стабилизированного напряжения
  2. Схема преобразователя
  3. Даташит
  4. USB-зарядник на основе LM2596
  5. Стабилизатор тока
  6. Применение в самодельных устройствах
  7. Регулировка выходного тока и напряжения
  8. Улучшенные аналоги LM2596

История - линейные стабилизаторы

Для начала, объясню чем плохи стандартные линейные преобразователи напряжения вроде LM78XX (например 7805) или LM317. Вот его упрощённая схема.

Главный элемент такого преобразователя - мощный биполярный транзистор, включенный в своём «исконном» значении - как управляемый резистор. Этот транзистор входит в состав пары Дарлингтона (для увеличения коэффициента передачи по току и снижения мощности, необходимой на работу схемы). Базовый ток задаётся операционным усилителем, который усиливает разность между выходным напряжением и заданным с помощью ИОН (источник опорного напряжения), т.е. он включен по классической схеме усилителя ошибки.

Таким образом, преобразователь просто включает резистор последовательно с нагрузкой, и управляет его сопротивлением чтобы на нагрузке гасилось, к примеру, ровно 5 вольт. Нетрудно посчитать что при понижении напряжения с 12 вольт до 5 (очень частый случай применения микросхемы 7805) входные 12 вольт распределяются между стабилизатором и нагрузкой в отношении «7 вольт на стабилизаторе + 5 вольт на нагрузке». На токе в полампера на нагрузке выделяется 2.5 ватта, а на 7805 - целых 3.5 ватта.

Получается что «лишние» 7 вольт просто гасятся на стабилизаторе, превращаясь в тепло. Во-первых, из-за этого возникают проблемы с охлаждением, а во-вторых на это уходит много энергии из источника питания. При питании от розетки это не очень страшно (хотя всё равно наносится вред экологии), а при батарейном или аккумуляторном питании об этом нельзя не помнить.

Другая проблема - таким методом вообще невозможно сделать повышающий преобразователь. Часто такая потребность возникает, и попытки решить этот вопрос двадцать-тридцать лет назад поражают - насколько сложен был синтез и расчёт таких схем. Одна из простейших схем такого рода - двухтактный преобразователь 5В->15В.

Нужно признать, что он обеспечивает гальваническую развязку, однако он неэффективно использует трансформатор - каждый момент времени задействована лишь половина первичной обмотки.

Забудем это как страшный сон и перейдём к современной схемотехнике.

Источник напряжения

Схема

Микросхема удобна в применении в качестве step–down конвертера: мощный биполярный ключ находится внутри, осталось добавить остальные компоненты регулятора - быстрый диод, индуктивность и выходной конденсатор, также возможно поставить входной конденсатор - всего 5 деталей.

В версии LM2596ADJ также потребуется схема задания выходного напряжения, это два резистора или один переменный резистор.

Схема понижающего преобразователя напряжения на основе LM2596:

Вся схема вместе:

Здесь можно скачать даташит/datasheet на LM2596 .

Принцип работы: управляемый ШИМ–сигналом мощный ключ внутри устройства посылает импульсы напряжения на индуктивность. В точке А x% времени присутствует полное напряжение, и (1–x)% времени напряжение равно нулю. LC–фильтр сглаживает эти колебания, выделяя постоянную составляющую, равную x * напряжение питания. Диод замыкает цепь, когда транзистор выключен.

Подробное описание работы

Индуктивность противится изменению тока через неё. При появлении напряжения в точке А дроссель создаёт большое отрицательное напряжение самоиндукции, и напряжение на нагрузке становится равно разности напряжения питания и напряжения самоиндукции. Ток индуктивности и напряжение на нагрузке постепенно растут.

После пропадания напряжения в точке А дроссель стремится сохранить прежний ток, текущий из нагрузки и конденсатора, и замыкает его через диод на землю - он постепенно падает. Таким образом, напряжение на нагрузке всегда меньше входного напряжения и зависит от скважности импульсов.

Выходное напряжение

Модуль выпускается в четырёх версиях: с напряжением 3.3В (индекс –3.3), 5В (индекс –5.0), 12В (индекс –12) и регулируемая версия LM2596ADJ. Имеет смысл везде применять именно настраиваемую версию, поскольку она в большом количестве есть на складах электронных компаний и вы вряд ли столкнётесь с её дефицитом - а она требует дополнительно лишь два копеечных резистора. Ну и конечно, версия на 5 вольт тоже пользуется популярностью.

Количество на складе - в последнем столбце.

Можно сделать задание выходного напряжения в виде DIP-переключателя, хороший пример этого приведён здесь, либо в виде поворотного переключателя. В обоих случаях потребуется батарея точных резисторов - зато можно настраивать напряжение без вольтметра.

Корпус

Существует два варианта корпусов: корпус для планарного монтажа TO–263 (модель LM2596S) и корпус для монтажа в отверстия TO–220 (модель LM2596T). Я предпочитаю применять планарную версию LM2596S, поскольку в этом случае радиатором является сама плата, и отпадает необходимость покупать дополнительный внешний радиатор. К тому же её механическая стойкость гораздо выше, в отличие от TO-220, которую обязательно надо к чему–то привинчивать, хотя бы даже к плате - но тогда проще установить планарную версию. Микросхему LM2596T-ADJ я рекомендую использовать в блоках питания, потому что с её корпуса легче отвести большое количество тепла.

Сглаживание пульсаций входного напряжения

Можно использовать как эффективный «интеллектуальный» стабилизатор после выпрямления тока. Поскольку микросхема следит непосредственно за величиной выходного напряжения, колебания входного напряжения вызовут обратно пропорциональное изменение коэффициента преобразования микросхемы, и выходное напряжение останется в норме.

Из этого следует, что при использовании LM2596 в качестве понижающего преобразователя после трансформатора и выпрямителя, входной конденсатор (т.е. тот который стоит сразу после диодного моста) может иметь небольшую ёмкость (порядка 50-100мкФ).

Выходной конденсатор

Благодаря высокой частоте преобразования выходной конденсатор тоже не обязан иметь большую ёмкость. Даже мощный потребитель не успеет значительно посадить этот конденсатор за один цикл. Проведём расчёт: возьмём конденсатор в 100мкФ, 5В выходного напряжения и нагрузку, потребляющую 3 ампера. Полный заряд конденсатора q = C*U = 100e-6 мкФ * 5 В = 500e-6 мкКл.

За один цикл преобразования нагрузка заберёт из конденсатора dq = I*t = 3 А * 6.7 мкс = 20 мкКл (это всего 4% от полного заряда конденсатора), и тут же начнётся новый цикл, и преобразователь засунет в конденсатор новую порцию энергии.

Самое главное - не используйте в качестве входного и выходного конденсатора танталовые конденсаторы. У них прямо в даташитах пишут - «не использовать в цепях питания», потому что они очень плохо переносят даже кратковременные превышения напряжения, и не любят высокие импульсные токи. Используйте обычные алюминиевые электролитические конденсаторы.

Эффективность, КПД и тепловые потери

КПД не так высок, поскольку в качестве мощного ключа используется биполярный транзистор - а он имеет ненулевое падение напряжения, порядка 1.2В. Отсюда и падение эффективности при маленьких напряжениях.

Как видим, максимальная эффективность достигается при разности входного и выходного напряжений порядка 12 вольт. То есть, если нужно уменьшить напряжение на 12 вольт - в тепло уйдёт минимальное количество энергии.

Что такое эффективность преобразователя? Это величина, характеризующая токовые потери - на выделение тепла на полностью открытом мощном ключе по закону Джоуля-Ленца и на аналогичные потери при переходных процессах - когда ключ открыт, допустим, лишь наполовину. Эффекты от обоих механизмов могут быть сравнимы по величине, поэтому не нужно забывать про оба пути потерь. Небольшая мощность идёт также на питание самих «мозгов» преобразователя.

В идеальном случае, при преобразовании напряжения с U1 до U2 и выходном токе I2 выходная мощность равна P2 = U2*I2, входная мощность равна ей (идельный случай). Значит, входной ток составит I1 = U2/U1*I2.

В нашем же случае преобразование имеет эффективность ниже единицы, поэтому часть энергии останется внутри прибора. Например, при эффективности η выходная мощность составит P_out = η*P_in, а потери P_loss = P_in-P_out = P_in*(1-η) = P_out*(1-η)/η. Конечно, преобразователь вынужден будет увеличить входной ток, чтобы поддерживать заданные выходные ток и напряжение.

Можно считать, что при преобразовании 12В -> 5В и выходном токе 1А потери в микросхеме составят 1.3 ватта, а входной ток будет равен 0.52А. В любом случае это лучше любого линейного преобразователя, который даст минимум 7 ватт потерь, и потребит из входной сети (в том числе на это бесполезное дело) 1 ампер - в два раза больше.

Кстати, микросхема LM2577 имеет в три раза меньшую частоту работы, и её эффективность несколько выше, поскольку меньше потерь в переходных процессах. Однако, ей нужны в три раза более высокие номиналы дросселя и выходного конденсатора, а это лишние деньги и размер платы.

Увеличение выходного тока

Несмотря на и так довольно большой выходной ток микросхемы, иногда требуется ещё бОльший ток. Как выйти из этой ситуации?

  1. Можно запараллелить несколько преобразователей. Конечно, они должны быть настроены точно на одно и то же выходное напряжение. В таком случае нельзя обойтись простыми SMD-резисторами в цепи задания напряжения Feedback, нужно использовать либо резисторы с точностью 1%, либо вручную задавать напряжение переменным резистором.
Если нет уверенности в маленьком разбросе напряжений — лучше параллелить преобразователи через небольшой шунт, порядка нескольких десятков миллиом. Иначе вся нагрузка ляжет на плечи преобразователя с самым высоким напряжением и он может не справиться. 2. Можно использовать хорошее охлаждение — большой радиатор, многослойная печатная плата большой площади. Это даст возможность [поднять ток](/lm2596-tips-and-tricks/ "Применение LM2596 в устройствах и разводка платы") до 4.5А. 3. Наконец, можно [вынести мощный ключ](#a7) за пределы корпуса микросхемы. Это даст возможность применить полевой транзистор с очень маленьким падением напряжения, и здорово увеличит как выходной ток, так и КПД.

USB-зарядник на LM2596

Можно сделать очень удобный походный USB-зарядник. Для этого необходимо настроить регулятор на напряжение 5В, снабдить его USB-портом и обеспечить питание зарядника. Я использую купленный в Китае радиомодельный литий-полимерный аккумулятор, обеспечивающий 5 ампер-часов при напряжении 11.1 вольта. Это очень много - достаточно для того чтобы 8 раз зарядить обычный смартфон (не учитывая КПД). С учётом КПД получится не меньше 6 раз.

Не забудьте замкнуть контакты D+ и D- гнезда USB, чтобы сообщить телефону что он подключен к заряднику, и передаваемый ток неограничен. Без этого мероприятия телефон будет думать, что он подключен к компьютеру, и будет заряжаться током в 500мА - очень долго. Более того, такой ток может даже не скомпенсировать ток потребления телефона, и аккумулятор вовсе не будет заряжаться.

Также можно предусмотреть отдельный вход 12В от автомобильного аккумулятора с разъёмом прикуривателя - и переключать источники каким-либо переключателем. Советую установить светодиод, который будет сигнализировать что устройство включено, чтобы не забыть выключить батарею после полной зарядки - иначе потери в преобразователе полностью посадят резервную батарею за несколько дней.

Такой аккумулятор не слишком подходит, потому что он рассчитан на высокие токи - можно попробовать найти менее сильноточную батарею, и она будет иметь меньшие размеры и вес.

Стабилизатор тока

Регулировка выходного тока

Возможна только в версии с настраиваемым выходным напряжением (LM2596ADJ). Кстати, китайцы делают и такую версию платы, с регулировкой напряжения, тока и всевозможной индикацией - готовый модуль стабилизатора тока на LM2596 с защитой от КЗ, можно купить под названием xw026fr4.

Если вы не хотите применять готовый модуль, и желаете сделать эту схему самостоятельно - ничего сложного, за одним исключением: у микросхемы нет возможности управления током, однако её можно добавить. Я объясню, как это сделать, и попутно разъясню сложные моменты.

Применение

Стабилизатор тока - штука, нужная для питания мощных светодиодов (кстати - мой проект микроконтроллерного драйвера мощного светодиода ), лазерных диодов, гальваники, заряда аккумуляторов. Как и в случае со стабилизаторами напряжения, есть два типа таких устройств - линейный и импульсный.

Классический линейный стабилизатор тока - это LM317, и он вполне хорош в своём классе - но его предельный ток 1.5А, для многих мощных светодиодов этого недостаточно. Даже если умощнить этот стабилизатор внешним транзистором - потери на нём просто неприемлемы. Весь мир катит бочку на энергопотребление лампочек дежурного питания, а тут LM317 работает с КПД 30% Это не наш метод.

А вот наша микросхема - удобный драйвер импульсного преобразователя напряжения, имеющий много режимов работы. Потери минимальны, поскольку не применяется никаких линейных режимов работы транзисторов, только ключевые.

Изначально она предназначалась для схем стабилизации напряжения, однако несколько элементов превращают её в стабилизатор тока. Дело в том, что микросхема всецело полагается на сигнал «Feedback» в качестве обратной связи, а вот что на него подавать - это уже наше дело.

В стандартной схеме включения на эту ногу подаётся напряжение с резистивного делителя выходного напряжения. 1.2В - это равновесие, если Feedback меньше - драйвер увеличивает скважность импульсов, если больше - уменьшает. Но ведь можно на этот вход подать напряжение с токового шунта!

Шунт

Например, на токе 3А нужно взять шунт номиналом не более 0.1Ом. На таком сопротивлении этот ток выделит около 1Вт, так что и это много. Лучше запараллелить три таких шунта, получив сопротивление 0.033Ом, падение напряжения 0.1В и выделение тепла 0.3Вт.

Однако, вход Feedback требует напряжение 1.2В - а мы имеем лишь 0.1В. Ставить бОльшее сопротивление нерационально (тепла будет выделяться в 150 раз больше), поэтому остаётся как-то увеличить это напряжение. Делается это с помощью операционного усилителя.

Неинвертирующий усилитель на ОУ

Классическая схема, что может быть проще?

Объединяем

Теперь объединяем обычную схему преобразователя напряжения и усилитель на ОУ LM358, к входу которого подключаем токовый шунт.

Мощный резистор 0.033 Ом - это и есть шунт. Его можно сделать из трёх резисторов 0.1 Ом, соединённых параллельно, а для увеличения допустимой рассеиваемой мощности - используйте SMD-резисторы в корпусе 1206, поставьте их с небольшим промежутком (не вплотную) и постарайтесь максимально оставить слой меди вокруг резисторов и под ними. На выход Feedback подключен небольшой конденсатор, чтобы устранить возможный переход в режим генератора.

Регулируем и ток и напряжение

Давайте заведём на вход Feedback оба сигнала - и ток, и напряжение. Для объединения этих сигналов воспользуемся обычной схемой монтажного «И» на диодах. Если сигнал тока выше сигнала напряжения - он будет доминировать и наоборот.

Пару слов о применимости схемы

Вы не можете регулировать выходное напряжение. Хотя невозможно регулировать одновременно и выходной ток, и напряжение - они пропорциональны друг другу, с коэффициентом «сопротивление нагрузки». А если блок питания реализует сценарий вроде «постоянное выходное напряжение, но при превышении тока начинаем уменьшать напряжение», т.е. CC/CV - то это уже зарядное устройство.

Максимальное напряжение питания схемы - 30В, поскольку это предел для LM358. Можно расширить этот предел до 40В (или 60В с версией LM2596-HV), если питать ОУ от стабилитрона.

В последнем варианте в качестве суммирующих диодов необходимо использовать диодную сборку, поскольку в ней оба диода сделаны в рамках одного технологического процесса и на одной пластине кремния. Разброс их параметров будет гораздо меньше разброса параметров отдельных дискретных диодов - благодаря этому мы получим высокую точность отслеживания значений.

Также нужно внимательно следить за тем, чтобы схема на ОУ не возбудилась и не перешла в режим генерации. Для этого старайтесь уменьшить длину всех проводников, а особенно дорожки, подключенной к 2 выводу LM2596. Не располагайте ОУ вблизи этой дорожки, а диод SS36 и конденсатор фильтра расположите ближе к корпусу LM2596, и обеспечьте минимальную площадь петли земли, подключенной к этим элементам - необходимо обеспечить минимальную длину пути возвратного тока «LM2596 -> VD/C -> LM2596″.

Применение LM2596 в устройствах и самостоятельная разводка платы

О применении микросхемы в своих устройствах не в виде готового модуля я подробно рассказал в другой статье , в которой рассмотрены: выбор диода, конденсаторов, параметров дросселя, а также рассказал про правильную разводку и несколько дополнительных хитростей.

Возможности дальнейшего развития

Улучшенные аналоги LM2596

Проще всего после этой микросхемы перейти на LM2678 . По сути - это тот же самый stepdown преобразователь, только с полевым транзистором, благодаря которому КПД поднимается до 92%. Правда, у него 7 ног вместо 5, и он не pin-to-pin совместимый. Тем не менее эта микросхема очень похожа, и будет простым и удобным вариантом с улучшенной эффективностью.

L5973D – довольно старая микросхема, обеспечивающая до 2.5А, и немного более высокий КПД. Также у неё почти в два раза выше частота преобразования (250 кГц) - следовательно, требуются меньшие номиналы индуктивности и конденсатора. Однако, я видел что с ней происходит, если поставить её напрямую в автомобильную сеть - довольно часто выбивает помехами.

ST1S10 - высокоэффективный (КПД 90%) DC–DC stepdown преобразователь.

  • Требует 5–6 внешних компонентов;

ST1S14 - высоковольтный (до 48 вольт) контроллер. Большая частота работы (850 кГц), выходной ток до 4А, выход Power Good, высокий КПД (не хуже 85%) и схема защиты от превышения тока нагрузки делают его, наверное, лучшим преобразователем для питания сервера от 36–вольтового источника.

Если требуется максимальный КПД - придётся обращаться к неинтегрированным stepdown DC–DC контроллерам. Проблема интегрированных контроллеров в том, что в них никогда не бывает классных силовых транзисторов - типичное сопротивление канала не выше 200мОм. Однако если взять контроллер без встроенного транзистора - можно выбрать любой транзистор, хоть AUIRFS8409–7P с сопротивлением канала в пол–миллиома

DC-DC преобразователи с внешним транзистором

Следующая часть

Отличительной особенностью и недостатком обычных линейных стабилизаторов напряжения, работающих в режиме сильных девиаций по входному уровню, является их низкий КПД. Подобное положение, как правило, объясняется значительными тепловыми потерями в элементах схемы. Помимо этого, такие устройства при больших нагрузочных токах (до десятков Ампер) выглядят очень громоздко и имеют значительный вес. Существенно улучшить все указанные параметры преобразовательного устройства удаётся в случае применения импульсного метода стабилизации.

Импульсный стабилизатор напряжения – это прибор особого класса, позволяющий поддерживать выходное напряжение в заданных пределах за счёт ключевого режима работы основных элементов схемы. Рассмотрим принцип действия этого устройства более подробно.

Основы импульсного преобразования

Прежде всего, следует знать, что импульсные устройства для получения стабилизированного напряжения, подобно своим линейным аналогам, могут выполняться по параллельной и последовательной схеме. И в том, и в другом случае функцию ключевого элемента традиционно выполняет мощный полевой транзистор. Поскольку в режиме ключа его рабочая точка мгновенно смещается из области насыщения в зону отсечки (быстро «проскакивая» активный участок), такая схема имеет минимальные тепловые потери. А это свидетельствует о том, что импульсный стабилизатор напряжения обладает высоким КПД.

Стабилизация выходного сигнала осуществляется за счёт управления длительностью или частотой следования вырабатываемых специальным генератором импульсов, что в электронике называется широтным (ШИ) или частотным (ЧИ) импульсным регулированием.

Обратите внимание! В некоторых моделях таких приборов применяется комбинированный широтно-частотный метод управления (ЧШИ).

В стабилизаторах первого типа (ШИ) периодичность следования импульсов остаётся величиной постоянной, а меняется лишь их длительность. Во втором случае изменению подлежит частота, а длина (скважность) импульсного сигнала со временем не меняется.

На выходе регулирующего преобразователя (инвертора) присутствует сигнал прямоугольной формы, который не годится для подачи в рабочую нагрузку. Поэтому его прежде следует выпрямить или сгладить до формы, пригодной для использования. Этим и объясняется наличие на выходе устройства специального фильтрующего модуля, состоящего из сглаживающих пульсации элементов. Их функцию традиционно выполняют емкостно-индуктивные цепочки П,- или Г-образного типа.

В зависимости от параметров этих цепей (от индуктивности дросселя, в частности), ток через фильтрующий LС-элемент может иметь прерывистый или постоянный характер. Всё определяется тем, успевает ли к приходу очередного импульса разрядиться через индуктивность заряженный ранее конденсатор. При предъявлении особых требований к уровню пульсаций предпочтение отдаётся неразрывному принципу формирования выходного тока.

Дополнительная информация. Своеобразной «расплатой» за это является значительный расход медного материала, идущего на изготовление катушки дросселя.

В тех случаях, когда значение коэффициента пульсаций не нормируется, допускается, чтобы схема работала в режиме прерывистых токов.

Блок-схема

Классический импульсный стабилизатор напряжения содержит в своём составе следующие обязательные модули:

  • Задающий генератор;
  • Непосредственно преобразователь (инвертор);
  • Сравнивающее устройство;
  • Фильтрующий элемент.

Задающий генератор (ЗГ) обеспечивает формирование импульсов с формой, близкой к прямоугольному стандарту. Последние поступают в преобразовательное устройство, где осуществляется их обработка по выбранному параметру управления (частоте, длительности или тому и другому сразу). Затем обработанные импульсы подаются на фильтрующий элемент, а после него – на выход и в цепочку обратной (управляющей) связи.

Ознакомиться с порядком работы устройства поможет приведённая ниже блок-схема.

Важно! Ключевым звеном в этой схеме является цепочка обратной связи (устройство сравнения), наличие которой позволяет по состоянию выходного сигнала определять необходимость дополнительных действий (регулировок).

То есть когда выходной сигнал имеет идеальные параметры, устройство сравнивает его с образцовыми напряжениями и воспринимает это как команду к прерыванию управляющей операции. Если форма или другая характеристика выходного сигнала начинают отличаться от заданных в ТУ параметров, сравнивающий модуль (СУ) вырабатывает сигнал дополнительной корректировки формируемых генератором импульсов.

Преимущества ОС-регулирования

На задающий генератор подаётся разностный сигнал, пропорциональный отклонению параметров выходного напряжения от нормы, так что вся эта схема работает по принципу дифференциального усилителя. Такое схемное решение позволяет многократно увеличить чувствительность петли обратной связи (ОС) и повысить эффективность процесса регулирования.

В таком режиме формируемые ЗГ управляющие импульсы поступают на ключевые элементы преобразовательного устройства, где происходит их обработка с одновременной подготовкой к последующей фильтрации. При изменении частоты или ширины импульса сигналом с СУ удаётся добиться требуемого качества выходного напряжения.

Дополнительная информация. Возможны ситуации, когда необходимость в регулировке полностью исключается. Обычно это случается, когда выходное напряжение соответствует заданным ТУ требованиям.

Схемы управляющих устройств

Повышающие

Повышающие импульсные схемы стабилизации востребованы при необходимости подключения нагрузки, напряжение на которой должно превышать входной параметр на какую-то величину. При этом гальванической развязки между потребителем и питающей электрической сетью 220 Вольт не предусматривается. За рубежом этот принцип преобразования называется «boost converter», а его схема приводится на рисунке, размещённом ниже по тексту.

При поступлении управляющего напряжения между затвором и истоком транзистора VT1 он входит в состояние насыщения, обеспечивая беспрепятственное протекание тока через накопительный дроссель L1. При этом составляющая выходного тока создаётся за счёт зарядки конденсатора С1.

После снятия потенциала с транзистора VT1 он переходит в состояние отсечки; при этом на дросселе L1 появляется ЭДС самоиндукции, передающаяся через диод VD1 на нагрузку с той же полярностью. По окончании протекания тока по дросселю L1 катушка полностью отдаёт энергию в цепь. Её принимает конденсатор С1, который заряжается до тех пор, пока транзистор VT1 снова не окажется в насыщении.

Понижающий стабилизатор

Понижающий стабилизатор работает по тому же принципу, но только дроссель в этом случае включается после управляемого полевого транзистора (смотрите рисунок ниже).

Зарубежное название этого принципа преобразования – «chopper», а его характерной особенностью является пониженное выходное напряжение.

После подачи управляющего импульса на VT1 транзистор насыщается, вследствие чего через него начинает течь ток, поступающий через сглаживающий дроссель L1 непосредственно в нагрузку (диод VD1 закрыт обратным напряжением).

После снятия входного сигнала ключевой транзистор перейдёт в режим отсечки, что приведёт к резкому снижению тока. ЭДС самоиндукции дросселя L1 будет усиленно препятствовать его уменьшению, поддерживая процесс в нагрузке. Однако за счёт падения напряжения на катушке L1 его величина на выходе устройства будет всегда меньше входного значения (за счёт противоположного знака ЭДС).

Инвертирующее устройство

Этот тип стабилизаторов применяется при работе с нагрузками, имеющими фиксированный вольтаж выходного напряжения, сдвинутого по фазе относительно входного. При этом само его значение может быть как больше, так и меньше, чем входное (всё зависит от того, как было отстроено инвертирующее устройство).

Аналогично обеим предыдущим схемам здесь гальваническая развязка питающих и выходных цепей полностью отсутствует. На иностранном лексиконе такие стабилизаторы обозначаются как «buck-boost converter». Основное схемное отличие от понижающего преобразователя состоит в том, что дроссель и диод в этом случае поменялись местами. Причём полупроводниковый элемент включается в обратном (закрытом для прямого тока) направлении.

Такая замена приводит к сдвигу по фазе между входным и выходным сигналами на 90 градусов (иными словами – к его инверсии).

В заключительной части этого обзора обратим внимание на ещё одну деталь, характерную для всех рассмотренных разновидностей преобразующих устройств. В качестве коммутирующего ключа во всех схемах используется специальный полупроводниковый элемент с полевой структурой, управляемый не напряжением, а потенциалом. За счёт этого удаётся многократно сократить входные управляющие токи, а также дополнительно повысить КПД всего устройства в целом.

Видео

Из этой статьи вы узнаете о:

Каждый из нас в своей жизни использует большое количество различных электроприборов. Очень большое их число нуждается в низковольтном питании. Другими словами они потребляют электроэнергию, которая не характеризуется напряжением в 220 вольт, а должна иметь от одного до 25-ти вольт.

Конечно, для подачи электроэнергии с таким количеством вольт используются специальные приборы. Однако, проблема возникает не в понижении напряжения, а в соблюдении ее стабильного уровня.

Для этого можно воспользоваться линейными стабилизационными устройствами. Однако такое решение будет очень громоздким удовольствием. Данную задачу идеально выполнит любой импульсный стабилизатор напряжения.

Разобранный импульсный стабилизатор

Если сравнивать импульсные и линейные стабилизационные приборы, то главное их отличие заключается в работе регулирующего элемента. В первом типе приборов этот элемент работает как ключ. Другими словами он находится или в замкнутом, или в разомкнутом состоянии.

Главными элементами импульсных стабилизационных устройств являются регулирующий и интегрирующий элементы. Первый обеспечивает подачу и прерывания подачи электрического тока. Задачей второго является накопление электроэнергии и постепенная ее отдача в нагрузку.

Принцип работы импульсных преобразователей

Принцип работы импульсного стабилизатора

Главный принцип работы заключается в том, что при замыкании регулирующего элемента электроэнергия накапливается в интегрирующем элементе. Это накопление наблюдается повышением напряжения. После того, когда регулирующий элемент отключается, т.е. размыкает линию подачи электричества, интегрирующий компонент отдает электричество, постепенно снижая величину напряжения. Благодаря такому способу работы импульсное стабилизационное устройство не тратит большого количества энергии и может иметь небольшие габариты.

Регулирующий элемент может представлять собой тиристор, биполярный транзитор или полевой транзистор. В качестве интегрирующих элементов могут использоваться дроссели, аккумуляторы или конденсаторы.

Заметим, что импульсные стабилизационные устройства могут работать двумя различными способами. Первый предполагает использование широтно-импульсной модуляции (ШИМ). Второй - триггера Шмитта. Как ШИМ, так и триггер Шмитта используются для управления ключами стабилизационного устройства.

Стабилизатор с использованием ШИМ

Импульсный стабилизатор постоянного напряжения, который работает на основе ШИМ, кроме ключа и интегратора в своем составе имеет:

  1. генератор;
  2. операционный усилитель;
  3. модулятор

Работа ключа напрямую зависит от уровня напряжения на входе и скважности импульсов. Влияние на последнюю характеристику осуществляют частота генератора и емкость интегратора. Когда ключ размыкается, начинается процесс отдачи электричества из интегратора в нагрузку.

Принципиальная схема стабилизатора ШИМ

При этом операционный усилитель сравнивает уровни выходного напряжения и напряжения сравнения, определяет разницу и передает необходимую величину усиления на модулятор. Этот модулятор осуществляет преобразование импульсов, которые выдает генератор, на прямоугольные импульсы.

Конечные импульсы характеризуются таким же отклонением скважности, которое пропорционально разности выходного напряжения и напряжения сравнения. Именно эти импульсы и определяют поведение ключа.

То есть при определенной скважности ключ может замыкаться, или размыкаться. Получается, что главную роль в этих стабилизаторах играют импульсы. Собственно от этого и пошло название этих устройств.

Преобразователь с триггером Шмитта

В тех импульсных стабилизационных приборах, которые используют триггер Шмитта, уже нет такого большого количества компонентов, как в предыдущем типе устройства. Здесь главным элементом является триггер Шмитта, в состав которого входит компаратор. Задачей компаратора является сравнение уровня напряжения на выходе и максимально допустимого ее уровня.

Стабилизатор с триггером Шмитта

Когда напряжение на выходе превысило свой максимальный уровень, триггер переключается в нулевую позицию и приводит к размыканию ключа. В это время дроссель или конденсатор разряжаются. Конечно, за характеристиками электрического тока постоянно следит вышеупомянутый компаратор.

И тогда, когда напряжение падает ниже требуемого уровня, фаза «0» меняется на фазу «1». Далее ключ замыкается, и электрический ток поступает в интегратор.

Преимуществом такого импульсного стабилизатора напряжения является то, что его схема и конструкция являются достаточно простыми. Однако он не может применяться во всех случаях.

Стоит отметить, что импульсные стабилизационные устройства могут работать только в отдельных направлениях. Здесь имеется в виду, что они могут быть как сугубо понижающими, так и сугубо повышающими. Также выделяют еще два типа таких приборов, а именно инвертирующий и устройство, которые могут произвольно изменять напряжение.

Схема снижающего импульсного стабилизационного прибора

В дальнейшем рассмотрим схему снижающего импульсного стабилизационного прибора. Он состоит из:

  1. Регулирующего транзистора или любого другого типа ключа.
  2. Катушки индуктивности.
  3. Конденсатора.
  4. Диода.
  5. Нагрузки.
  6. Устройства управления.

Узел, в котором будет накапливаться запас электроэнергии, состоит из самой катушки (дросселя) и конденсатора.

В то время, когда ключ (в нашем случае транзистор) подключен, ток движется к катушке и конденсатору. Диод находится в закрытом состоянии. То есть он не может пропускать ток.

За исходной энергией следит устройство управления, которое в нужный момент отключает ключ, то есть переводит его в состояние отсечки. Когда ключ находится в этом состоянии, происходит уменьшение тока, который проходит через дроссель.

Снижающий импульсный стабилизатор

При этом в дросселе меняется направление напряжения и результате ток получает напряжение, величина которого является разницей между электродвижущей силой самоиндукции катушки и количеством вольт на входе. В это время открывается диод и дроссель через него подает ток в нагрузку.

Когда запас электроэнергии исчерпывается, то происходит подключение ключа, закрытия диода и зарядка дросселя. То есть все повторяется.
Повышающий импульсный стабилизатор напряжения работает подобным образом, как и понижающий. Аналогичным алгоритмом работы характеризуется и инвертирующий стабилизационный прибор. Конечно, его работа имеет свои отличия.

Главное отличие импульсного повышающего устройства заключается в том, то в нем входное напряжение и напряжение катушки имеют одно и тот же направление. В результате они суммируются. В импульсном стабилизаторе сначала размещается дроссель, затем транзистор и диод.

В инвертирующем стабилизационном устройстве направление ЭДС самоиндукции катушки является таковым, как и в понижающем. В то время, когда подключается ключ и закрывается диод, питание обеспечивает конденсатор. Любой из таких приборов можно собрать собственноручно.

Полезный совет: вместо диодов можно использовать и ключи (тиристорные или транзисторные). Однако они должны выполнять операции, которые являются противоположными основном ключу. Другими словами, когда основной ключ закрывается, то ключ вместо диода должен открываться. И наоборот.

Выходя из вышеопределенного строения стабилизаторов напряжения с импульсным регулированием, можно определить те особенности, которые относятся к преимуществам, а которые к недостаткам.

Преимущества

Преимуществами этих устройств являются:

  1. Достаточно легкое достижение такой стабилизации, которая характеризуется очень высоким коэффициентом.
  2. КПД высокого уровня. Благодаря тому, что транзистор работает в алгоритме ключа, происходит малое рассеивание мощности. Это рассеяние значительно меньше, чем в линейных стабилизационных устройствах.
  3. Возможность выравнивания напряжения, которое на входе может колебаться в очень большом диапазоне. Если ток является постоянным, то этот диапазон может составлять от одного до 75-ти вольт. Если же ток является переменный, то этот диапазон может колебаться в пределах 90-260 вольт.
  4. Отсутствие чувствительности к частоте напряжения на входе и к качеству электропитания.
  5. Конечные параметры на выходе являются достаточно устойчивыми даже при условии, если происходят очень большие изменения в токе.
  6. Пульсация напряжения, которое выходит из импульсного устройства, всегда находится в пределах миливольтового диапазона и не зависит от того, какую мощность имеют подключенные электроприборы или их элементы.
  7. Стабилизатор включается всегда мягко. Это означает, что на выходе ток не характеризуется прыжками. Хотя надо отметить, при первом включении выброс тока является высоким. Однако для нивелирования этого явления применяются термисторы, которые имеют отрицательный ТКС.
  8. Малые величины массы и размеров.

Недостатки

  1. Если же говорить о недостатках этих стабилизационных приборов, то они кроются в сложности устройства. Из-за большого количества различных компонентов, которые могут выйти из строя довольно быстро, и специфического способа работы прибор не может похвастаться высоким уровнем надежности.
  2. Он постоянно сталкивается с высоким напряжением. Во время работы часто происходят переключения и наблюдаются сложные температурные условия для кристалла диода. Это однозначно влияет на пригодность к выпрямлению тока.
  3. Частое переключение коммутирующих ключей создает частотные помехи. Их число очень велико и это является негативным фактором.

Полезный совет: для устранения этого недостатка нужно воспользоваться специальными фильтрами.

  1. Их устанавливают как на входе, так и на выходе.В том случае, когда нужно сделать ремонт, то он также сопровождается сложностями. Здесь стоит отметить, что неспециалист поломку устранить не сможет.
  2. Ремонтные работы может осуществить тот, кто хорошо разбирается в таких преобразователях тока и имеет необходимое количество навыков. Иными словами, если такой прибор сгорел и его пользователь не имеет никаких знаний об особенностях прибора, то лучше отнести на ремонт в специализированные компании.
  3. Также для неспециалистов сложно настраивать импульсные стабилизаторы напряжения, в которые может входить 12 вольт или иное количество вольт.
  4. В том случае, если выйдет из строя тиристор или любой другой ключ, могут возникнуть очень сложные последствия на выходе.
  5. К минусам относится и потребность в использовании приборов, которые будут компенсировать коэффициент мощности. Также некоторые специалисты отмечают, что такие стабилизационные устройства стоят дорого и не могут похвастаться большим количеством моделей.

Сферы применения

Но, несмотря на это, такие стабилизаторы могут применяться в очень многих сферах. Однако наиболее употребляются они в радионавигационном оборудовании и электронике.

Кроме этого, их часто применяют для телевизоров с жидкокристаллическим дисплеем и жидкокристаллических мониторов, источников питания цифровых систем, а также для промышленного оборудования, которое нуждается в токе с низким количеством вольт.

Полезный совет: часто импульсные стабилизационные устройства используют в сетях с переменным током. Сами устройства превращают такой ток в постоянный и в том случае, если нужно подключить пользователей, нуждающихся в переменном токе, то на входе нужно подключить фильтр сглаживания и выпрямитель.

Стоит отметить, что любой низковольтный прибор требует использования таких стабилизаторов. Также их можно использовать для непосредственной подзарядки различных аккумуляторов и питания мощных светодиодов.

Внешний вид

Как уже отмечалось выше, преобразователи тока импульсного типа характеризуются небольшими размерами. В зависимости от того, на какой диапазон входных вольт они рассчитаны, зависит их размер и внешний вид.

Если они предназначены для работы с очень малой величиной входного напряжения, то они могут представлять собой малую пластмассовую коробку, от которой отходит определенное количество проводов.

Стабилизаторы, рассчитанные на большое количество входных вольт, представляют собой микросхему, в которой находятся все провода и к которой подключаются все компоненты. О них вы уже узнали.

Внешний вид этих стабилизационных устройств также зависит и от функционального назначения. Если они обеспечивают выход регулируемого (переменного) напряжения, то резиторный делитель размещают вне интегральной схемы. В том случае, если из прибора будет выходить фиксированное количество вольт, то этот делитель уже находится в самой микросхеме.

Важные характеристики

При подборе импульсного стабилизатора напряжения, который может выдавать постоянные 5в или иное количество вольт, обращают внимание на ряд характеристик.

Первой и самой важной характеристикой являются величины минимального и максимального напряжения, которое будет входить в сам стабилизатор. О верхних и нижних границах этой характеристики уже отмечалось.

Вторым важным параметром является наиболее высокий уровень тока на выходе.

Третьей важной характеристикой является номинальный уровень выходного напряжения. Иными словами спектр величин, в рамках которого оно может находиться. Стоит отметить, что многие эксперты утверждают, что максимальное входное и выходное напряжения равны.

Однако в реальности это не так. Причиной этого является то, что входные вольты уменьшаются на ключевом транзисторе. В результате на выходе получается несколько меньшее количество вольт. Равенство может быть только тогда, когда ток нагрузки являются очень малым. То же самое касается и минимальных значений.

Важной характеристикой любого импульсного преобразователя является точность напряжения на выходе.

Полезный совет: на этот показатель следует обращать внимание тогда, когда стабилизационное устройство обеспечивает выход фиксированного количества вольт.

Причиной этого является то, что резистор находится в середине преобразователя и точные его работы определяются в производства. Когда число выходных вольт регулируется пользователем, то регулируется и точность.

Работа практически любой электронной схемы требует наличия одного или нескольких источников постоянного напряжения, причем в подавляющем большинстве случаев используется стабилизированное напряжение. В стабилизированных источниках питания применяются либо линейные, либо импульсные стабилизаторы. Каждый тип преобразователей имеет свои достоинства и, соответственно, свою нишу в схемах электропитания. К несомненным достоинствам импульсных стабилизаторов относятся более высокие значения коэффициента полезного действия, возможность получения высоких значений выходного тока и высокая эффективность при большой разнице между значениями входного и выходного напряжений.

Принцип работы понижающего импульсного стабилизатора

На рисунке 1 представлена упрощенная схема силовой части ИПСН.

Рис. 1.

Полевой транзистор VT осуществляет высокочастотную коммутацию тока. В импульсных стабилизаторах транзистор работает в ключевом режиме, то есть может находиться в одном из двух стабильных состояний: полной проводимости и отсечки. Соответственно, работа ИПСН состоит из двух сменяющих друг друга фаз — фазы накачки энергии (когда транзистор VT открыт) и фазы разряда (когда транзистор закрыт). Работа ИПСН иллюстрируется рисунком 2.

Рис. 2. Принцип работы ИПСН: а) фаза накачки; б) фаза разряда; в) временные диаграммы

Фаза накачки энергии продолжается на протяжении интервала времени Т И. В это время ключ замкнут и проводит ток I VT . Далее ток проходит через дроссель L к нагрузке R, шунтированной выходным конденсатором C OUT . В первой части фазы конденсатор отдает ток I C в нагрузку, а во второй половине — отбирает часть тока I L от нагрузки. Величина тока I L непрерывно увеличивается, и происходит накопление энергии в дросселе L, а во второй части фазы — и на конденсаторе C OUT . Напряжение на диоде V D равно U IN (за вычетом падения напряжения на открытом транзисторе), и диод на протяжении этой фазы закрыт — ток через него не протекает. Ток I R , протекающий через нагрузку R, постоянен (разность I L — I C), соответственно, напряжение U OUT на выходе также постоянно.

Фаза разряда протекает в течение времени Т П: ключ разомкнут и ток через него не протекает. Известно, что ток, протекающий через дроссель, не может измениться мгновенно. Ток IL, постоянно уменьшаясь, протекает через нагрузку и замыкается через диод V D . В первой части этой фазы конденсатор C OUT продолжает накапливать энергию, отбирая часть тока I L от нагрузки. Во второй половине фазы разряда конденсатор тоже начинает отдавать ток в нагрузку. На протяжении этой фазы ток I R , протекающий через нагрузку, также постоянен. Следовательно, напряжение на выходе также стабильно.

Основные параметры

В первую очередь отметим, что по функциональному исполнению различают ИПСН с регулируемым и с фиксированным выходным напряжением. Типичные схемы включения обоих типов ИПСН представлены на рисунке 3. Различие между ними заключается в том, что в первом случае резисторный делитель, определяющий значение выходного напряжения, находится вне интегральной схемы, а во втором — внутри. Соответственно, в первом случае значение выходного напряжения задается пользователем, а во втором — устанавливается при изготовлении микросхемы.

Рис. 3. Типичная схема включения ИПСН: а) с регулируемым и б) с фиксированным выходным напряжением

К важнейшим параметрам ИПСН относят:

  • Диапазон допустимых значений входного напряжения U IN_MIN …U IN_MAX .
  • Максимальное значение выходного тока (тока в нагрузке) I OUT_MAX .
  • Номинальное значение выходного напряжения U OUT (для ИПСН с фиксированным значением выходного напряжения) или диапазон значений выходного напряжения U OUT_MIN …U OUT_MAX (для ИПСН с регулируемым значением выходного напряжения). Часто в справочных материалах указывается, что максимальное значение выходного напряжения U OUT_MAX равно максимальному значению входного напряжения U IN_MAX . В действительности это не совсем так. В любом случае выходное напряжение меньше входного, как минимум, на величину падения напряжения на ключевом транзисторе U DROP . При значении выходного тока, равного, например, 3А, величина U DROP составит 0,1…1,0В (в зависимости от выбранной микросхемы ИПСН). Примерное равенство U OUT_MAX и U IN_MAX возможно только при очень малых значениях тока нагрузки. Отметим также, что и сам процесс стабилизации выходного напряжения предполагает потерю нескольких процентов входного напряжения. Декларируемое равенство U OUT_MAX и U IN_MAX следует понимать только в том смысле, что других причин снижения U OUT_MAX , кроме тех, что указаны выше в конкретном изделии, не существует (в частности, нет явных ограничений на максимальную величину коэффициента заполнения D). В качестве U OUT_MIN обычно указывают значение напряжения обратной связи U FB . В реальности U OUT_MIN всегда должно быть на несколько процентов выше (из тех же соображений стабилизации).
  • Точность установления выходного напряжения. Задается в процентах. Имеет смысл только в случае ИПСН с фиксированным значением выходного напряжения, поскольку в этом случае резисторы делителя напряжения находятся внутри микросхемы, а их точность является параметром, контролируемым при изготовлении. В случае ИПСН с регулируемым значением выходного напряжения параметр теряет смысл, поскольку точность резисторов делителя выбирается пользователем. В этом случае можно говорить только о величине колебаний выходного напряжения относительно некоторого среднего значения (точность отработки сигнала обратной связи). Напомним, что в любом случае этот параметр для импульсных стабилизаторов напряжения в 3…5 раз хуже по сравнению с линейными стабилизаторами.
  • Падение напряжения на открытом транзисторе R DS_ON . Как уже отмечалось, с этим параметром связано неизбежное уменьшение напряжения на выходе по отношению к входному напряжению. Но важнее другое- чем выше значение сопротивления открытого канала, тем большая часть энергии рассеивается в виде тепла. Для современных микросхем ИПСН хорошим значением являются величины до 300мОм. Более высокие значения характерны для микросхем, разработанных не менее чем пять лет назад. Заметим также, что значение R DS_ON не является константой, а зависит от величины выходного тока I OUT .
  • Длительность рабочего цикла Т и частота коммутации F SW . Длительность рабочего цикла Т определяется как сумма интервалов Т И (длительность импульса) и Т П (длительность паузы). Соответственно, частота F SW — величина, обратная длительности рабочего цикла. Для некоторой части ИПСН частота коммутации — величина постоянная, определяемая внутренними элементами интегральной схемы. Для другой части ИПСН частота коммутации задается внешними элементами (как правило, внешней RC-цепью), в этом случае определяется диапазон допустимых частот F SW_MIN …F SW_MAX . Более высокая частота коммутации позволяет применять дроссели с меньшим значением индуктивности, что положительно сказывается и на габаритах изделия, и на его цене. В большинстве ИСПН используется ШИМ-регулирование, то есть величина Т постоянна, а в процессе стабилизации регулируется величина Т И. Существенно реже используется частотно-импульсная модуляция (ЧИМ-регулирование). В этом случае величина Т И постоянна, а стабилизация осуществляется за счет изменения длительности паузы Т П. Таким образом величины Т и, соответственно, F SW становятся переменными. В справочных материалах в этом случае, как правило, задается частота, соответствующая скважности, равной 2. Отметим, что следует отличать диапазон частот F SW_MIN …F SW_MAX регулируемой частоты от «ворот» допуска на фиксированную частоту, поскольку величина допуска часто указывается в справочных материалах производителя.
  • Коэффициент заполнения D, который равен процентно
    му отношению Т И к Т. Часто в справочных материалах указывают «до 100%». Очевидно, что это преувеличение, поскольку если ключевой транзистор постоянно открыт, то отсутствует процесс стабилизации. В большинстве моделей, выпущенных на рынок примерно до 2005-го года, из-за ряда технологических ограничений значение этого коэффициента было ограничено сверху величиной 90%. В современных моделях ИПСН большая часть этих ограничений преодолена, но фразу «до 100%» не следует понимать дословно.
  • Коэффициент полезного действия (или эффективность). Как известно, для линейных стабилизаторов (принципиально понижающих) это процентное отношение выходного напряжения ко входному, поскольку величины входного и выходного тока почти равны. Для импульсных стабилизаторов входной и выходной токи могут существенно отличаться, поэтому в качестве КПД берется процентное отношение выходной мощности ко входной. Строго говоря, для одной и той же микросхемы ИПСН значение этого коэффициента может существенно отличаться в зависимости от соотношения значений входного и выходного напряжения, величины тока в нагрузке и частоты коммутации. Для большинства ИПСН максимум КПД достигается при значении тока в нагрузке порядка 20…30% от максимально допустимого значения, поэтому численное значение не очень информативно. Целесообразнее пользоваться графиками зависимости, которые приводятся в справочных материалах производителя. На рисунке4 в качестве примера приведены графики эффективности для стабилизатора . Очевидно, что использование высоковольтного стабилизатора при невысоких реальных значениях входного напряжения не является хорошим решением, поскольку значение КПД существенно падает при приближении тока в нагрузке к максимальному значению. Вторая группа графиков иллюстрирует более предпочтительный режим, поскольку значение эффективности слабо зависит от колебаний выходного тока. Критерием правильного выбора преобразователя является даже не столько численное значение КПД, сколько именно плавность графика функции от тока в нагрузке (отсутствие «завала» в области больших токов).

Рис. 4.

Приведенным перечнем весь список параметров ИПСН не исчерпывается. С менее значимыми параметрами можно ознакомиться в литературе .

Специальные функции
импульсных стабилизаторов напряжения

В большинстве случаев ИПСН имеют ряд дополнительных функций, расширяющих возможности их практического применения. Наиболее часто встречаются следующие:

  • Вход отключения нагрузки «On/Off» или «Shutdown» позволяет разомкнуть ключевой транзистор и, таким образом, отключить напряжение от нагрузки. Как правило, используется для дистанционного управления группой стабилизаторов, реализуя определенный алгоритм подачи и отключения отдельных напряжений в системе электропитания. Кроме того, может применяться как вход для аварийного выключения питания при нештатной ситуации.
  • Выход нормального состояния «Power Good»- обобщающий выходной сигнал, подтверждающий, что ИПСН находится в нормальном рабочем состоянии. Активный уровень сигнала формируется после завершения переходных процессов от подачи входного напряжения и, как правило, используется или в качестве признака исправности ИПСН, или для запуска следующих ИСПН в последовательных системах электропитания. Причины, по которым этот сигнал может быть сброшен: падение входного напряжения ниже определенного уровня, выход выходного напряжения за определенные рамки, отключение нагрузки по сигналу Shutdown, превышение максимального значения тока в нагрузке (в частности, факт короткого замыкания), температурное отключение нагрузки и некоторые другие. Факторы, которые учитываются при формировании этого сигнала, зависят от конкретной модели ИПСН.
  • Вывод внешней синхронизации «Sync» обеспечивает возможность синхронизации внутреннего генератора с внешним синхросигналом. Используется для организации совместной синхронизации нескольких стабилизаторов в сложных системах электропитания. Отметим, что частота внешнего синхросигнала не обязательно должна совпадать с собственной частотой FSW, однако, она должна лежать в допустимых пределах, оговоренных в материалах производителя.
  • Функция плавного старта «Soft Start» обеспечивает относительно медленное нарастание выходного напряжения при подаче напряжения на вход ИПСН или при включении по заднему фронту сигнала Shutdown. Данная функция позволяет снизить броски тока в нагрузке при включении микросхемы. Параметры работы схемы плавного старта чаще всего являются фиксированными и определяются внутренними компонентами стабилизатора. В некоторых моделях ИПСН присутствует специальный вывод Soft Start. В этом случае параметры запуска определяются номиналами внешних элементов (резистор, конденсатор, RC-цепь), подключенных к данному выводу.
  • Температурная защита предназначена для предотвращения выхода из строя микросхемы в случае перегрева кристалла. Повышение температуры кристалла (независимо от причины) выше определенного уровня вызывает срабатывание защитного механизма — снижение тока в нагрузке или ее полное отключение. Это предотвращает дальнейшее повышение температуры кристалла и повреждение микросхемы. Возврат схемы в режим стабилизации напряжения возможен только после остывания микросхемы. Отметим, что температурная защита реализована в подавляющем большинстве современных микросхем ИПСН, однако отдельная индикация именно этого состояния не предусмотрена. Инженеру предстоит самому догадаться, что причиной отключения нагрузки является именно срабатывание температурной защиты.
  • Защита по току заключается либо в ограничении величины тока, протекающего через нагрузку, либо в отключении нагрузки. Защита срабатывает, если сопротивление нагрузки оказывается слишком малым (например, имеет место короткое замыкание), а ток превышает определенное пороговое значение, что может привести к выходу микросхемы из строя. Как и в предыдущем случае, диагностика этого состояния является заботой инженера.

Последнее замечание, касающееся параметров и функций ИПСН. На рисунках 1 и 2 присутствует разрядный диод V D . В довольно старых стабилизаторах этот диод реализован именно как внешний кремниевый. Недостатком такого схемотехнического решения было высокое падение напряжения (примерно 0,6 В) на диоде в открытом состоянии. В более поздних схемах использовался диод Шоттки, падение напряжения на котором составляло примерно 0,3 В. В разработках последних пяти лет эти решения используются только для высоковольтных преобразователей. В большинстве современных изделий разрядный диод выполняется в виде внутреннего полевого транзистора, работающего в противофазе с ключевым транзистором. В этом случае падение напряжения определяется сопротивлением открытого канала и при небольших токах нагрузки дает дополнительный выигрыш. Стабилизаторы, использующие это схемотехническое решение, называются синхронными. Обратим внимание, что возможность работы от внешнего синхросигнала и термин «синхронный» не связаны никаким образом.


с малым входным напряжением

Учитывая тот факт, что в номенклатуре STMicroelectronics присутствует примерно 70 типов ИПСН с встроенным ключевым транзистором, имеет смысл систематизировать все многообразие. Если в качестве критерия взять такой параметр, как максимальное значение входного напряжения, то можно выделить четыре группы:

1. ИПСН с малым входным напряжением (6 В и менее);

2. ИПСН с входным напряжением 10…28 В;

3. ИПСН с входным напряжением 36…38 В;

4. ИПСН с высоким входным напряжением (46 В и выше).

Параметры стабилизаторов первой группы приведены в таблице 1.

Таблица 1. ИПСН с малым входным напряжением

Наименование Вых. ток, A Входное
напряжение, В
Выходное
напряжение, В
КПД, % Частота коммутации, кГц Функции и флаги
I OUT V IN V OUT h F SW R DSON On/Off Sync.
Pin
Soft
Start
Pow Good
Макс Мин Макс Мин Макс Макс Тип
L6925D 0,8 2,7 5,5 0,6 5,5 95 600 240 + + + +
L6926 0,8 2,0 5,5 0,6 5,5 95 600 240 + + + +
L6928 0,8 2,0 5,5 0,6 5,5 95 1450 240 + + + +
PM8903A 3,0 2,8 6,0 0,6 6,0 96 1100 35 + + + +
ST1S06A 1,5 2,7 6,0 0,8 5,0 92 1500 150 + +
ST1S09 2,0 4,5 5,5 0,8 5,0 95 1500 100 * + +
ST1S12 0,7 2,5 5,5 0,6 5,0 92 1700 250 + +
ST1S15 0,5 2,3 5,5 Фикс. 1,82 и 2,8 В 90 6000 350 + +
ST1S30 3,0 2,7 6,0 0,8 5,0 85 1500 100 * + +
ST1S31 3,0 2,8 5,5 0,8 5,5 95 1500 60 + +
ST1S32 4,0 2,8 5,5 0,8 5,5 95 1500 60 + +
* – функция присутствует не для всех исполнений.

Еще в 2005 году линейка стабилизаторов этого типа была неполной. Она ограничивалась микросхемами . Эти микросхемы обладали хорошими характеристиками: высокой точностью и КПД, отсутствием ограничений на значение коэффициента заполнения, возможностью регулировки частоты при работе от внешнего синхросигнала, приемлемым значением R DSON . Все это делает данные изделия востребованными и в настоящее время. Существенный недостаток — невысокие значения максимального выходного тока. Стабилизаторы на токи нагрузки от 1 А и выше в линейке низковольтных ИПСН компании STMicroelectronics отсутствовали. В дальнейшем этот пробел был ликвидирован: сначала появились стабилизаторы на 1,5 и 2 А ( и ), а в последние годы — на 3 и 4 А ( , и ). Кроме повышения выходного тока, увеличилась частота коммутации, снизилось значение сопротивления открытого канала, что положительно сказалось на потребительских свойствах конечных изделий. Отметим также появление микросхем ИПСН с фиксированным выходным напряжением ( и ) — в линейке STMicroelectronics таких изделий не очень много. Последняя новинка — со значением RDSON в 35 мОм — это один из лучших показателей в отрасли, что в сочетании с широкими функциональными возможностями обещает этому изделию хорошие перспективы.

Основная область применения изделий данного типа — мобильные устройства с батарейным питанием. Широкий диапазон входного напряжения обеспечивает устойчивую работу аппаратуры при различных уровнях заряда аккумуляторной батареи, а высокий КПД минимизирует преобразование входной энергии в тепло. Последнее обстоятельство определяет преимущества импульсных стабилизаторов по сравнению с линейными именно в этой области пользовательских приложений.

В целом, данная группа у компании STMicroelectronics развивается достаточно динамично — примерно половина всей линейки появилась на рынке в последние 3-4 года.

Импульсные понижающие стабилизаторы
с входным напряжением 10…28 В

Параметры преобразователей этой группы приведены в таблице 2.

Таблица 2. ИПСН со входным напряжением 10…28 В

Наименование Вых. ток, A Входное
напряжение, В
Выходное
напряжение, В
КПД, % Частота коммутации, кГц Сопротивление открытого канала, мОм Функции и флаги
I OUT V IN V OUT h F SW R DSON On/Off Sync.
Pin
Soft
Start
Pow Good
Макс Мин Макс Мин Макс Макс Тип
L5980 0,7 2,9 18,0 0,6 18,0 93 250…1000 140 + + +
L5981 1,0 2,9 18,0 0,6 18,0 93 250…1000 140 + + +
L5983 1,5 2,9 18,0 0,6 18,0 93 250…1000 140 + + +
L5985 2,0 2,9 18,0 0,6 18,0 93 250…1000 140 + + +
L5986 2,5 2,9 18,0 0,6 18,0 93 250…1000 140 + + +
L5987 3,0 2,9 18,0 0,6 18,0 93 250…1000 140 + + +
L5988D 4,0 2,9 18,0 0,6 18,0 95 400…1000 120 + + +
L5989D 4,0 2,9 18,0 0,6 18,0 95 400…1000 120 + + +
L7980 2,0 4,5 28,0 0,6 28,0 93 250…1000 160 + + +
L7981 3,0 4,5 28,0 0,6 28,0 93 250…1000 160 + + +
ST1CC40 2,0 3,0 18,0 0,1 18,0 н.д. 850 95 + +
ST1S03 1,5 2,7 16,0 0,8 12,0 79 1500 280 +
ST1S10 3,0 2,7 18,0 0,8 16,0 95 900 120 + + +
ST1S40 3,0 4,0 18,0 0,8 18,0 95 850 95 + +
ST1S41 4,0 4,0 18,0 0,8 18,0 95 850 95 + +
ST763AC 0,5 3,3 11,0 Фикс. 3,3 90 200 1000 + +

Восемь лет назад данная группа была представлена только микросхемами , и с входным напряжением до 11 В. Диапазон от 16 до 28 В оставался не заполненным. Из всех перечисленных модификаций в настоящее время в линейке присутствует только , но параметры этого ИПСН современным требованиям соответствуют слабо. Можно считать, что за это время номенклатура рассматриваемой группы обновлена полностью.

В настоящее время база данной группы — микросхемы . Данная линейка рассчитана на весь диапазон токов нагрузки от 0,7 до 4 А, обеспечивает полный комплект специальных функций, частота коммутации регулируется в достаточно широких пределах, отсутствуют ограничения на значение коэффициента заполнения, значения КПД и сопротивления открытого канала отвечают современным требованиям. Существенных минусов в данной серии два. Во-первых, отсутствует встроенный разрядный диод (кроме микросхем с суффиксом D). Точность регулирования выходного напряжения достаточно высока (2%), но наличие трех и более внешних элементов в цепи компенсации обратной связи нельзя отнести к достоинствам. Микросхемы и отличаются от серии L598x только иным диапазоном входных напряжений, но схемотехника, а, следовательно, достоинства и недостатки аналогичны семейству L598x. В качестве примера на рисунке 5 представлена типовая схема включения трехамперной микросхемы . Присутствует и разрядный диод D, и элементы цепи компенсации R4, C4 и C5. Входы F SW и SYNCH остаются свободными, следовательно, преобразователь работает от внутреннего генератора с частотой F SW , заданной по умолчанию.

Загрузка...