Автомобильный портал - ZadonskVokzal

Плавный пуск двигателя постоянного тока 5 вольт. Плавный пуск электродвигателя своими руками

Полупроводниковые низковольтные устройства (SSRV) электродвигателя служат для снижения разрушающего воздействия резких бросков тока, вызывающих механические напряжения в оборудовании и компонентах системы. В фирмы ABB Inc. основной упор делают на расширение функций "мягких" пускателей, которые могут использоваться и в качестве устройств защитного отключения двигателя. Работа таких пускателей основана на контроле электродвигателя, напряжения и температуры. Новый подход к решению проблемы состоит в плавном увеличении вращающего момента, а не напряжения на двигателе.Устройство плавного пуска рассчитывает реальную мощность статора, его убытки и. как результат, реальную мощность, переданную на ротор. Схемы таймер для периодического включения нагрузки Важно, что вращающий момент двигателя больше не зависит напрямую от подаваемого на мотор напряжения или от его механических характеристик. Увеличение вращающего момента происходит в соответствии с рассчитанным по времени графиком разгона.Низковольтные "мягкие" пускатели фирмы Eaton (S752. SB01 и S811) используют для менеджмента обмоткой контактора напряжение с широтно-импульсной модуляцией (ШИМ) амплитудой 24 В. При этом в установившемся режиме устройство потребляет всего 5 Вт. Устройства менеджмента двигателем Ci-tronic фирмы Danfoss охватывают диапазон до 20 кВт (в зависимости от входного напряжения). Самый малогабаритный модуль устройства плавного пуска MCI-3 имеет ширину всего 22.5 мм. Модуль MCI-15 рассчитан на работу с двигателем мощностью до 7.5 кВт при напряжении 480 В.Важной характеристикой пускателей SSRV является плавная остановка двигателя. Устройства...

Для схемы "Устройство плавного пуска электроинструмента"

Случающиеся иногда отказы ручного электроинструмента - шлифовальных машин, электрических дрелей и лобзиков зачастую бывают связаны с их большим пусковым током и значительными динамическими нагрузками на детали редукторов, возникающими при резком пуске двигателя.Устройство плавного пуска коллекторного электродвигателя, описанное в , сложно по схеме, в нем имеется несколько прецизионных резисторов и оно требует кропотливого налаживания. Применив микросхему фазового регулятора КР1182ПМ1 , удалось изготовить немаловажно более простое устройство аналогичного назначения, не требующее налаживания. К нему можно без всякой доработки подключать любой ручной электроинструмент, питающийся от однофазной сети 220 В, 50 Гц. Пуск и остановка двигателя производятся выключателем электроинструмента, причем в его выключенном состоянии устройство ток не потребляет и может неограниченное пора оставаться подключенным к сети. Схема предлагаемого устройства изображена на рисунке. Вилку ХР1 включают в сетевую розетку, а в розетку XS1 вставляют сетевую вилку электроинструмента. Схемы удвоения постоянного напряжения на 2кв Можно установить и соединить параллельно несколько розеток для инструментов, работающих поочередно.При замыкании цепи электроинструмента его собственным выключателем на фазовый регулятор DA1 поступает напряжение. Начинается зарядка конденсатора С2, напряжение на нем постепенно увеличивается. В результате задержка включения внутренних тиристоров регулятора, а с ними и симистора VSI в каждом последующем полупериоде сетевого напряжения уменьшается, что приводит к плавному нарастанию протекающего через мотор и, как следствие, подъему его оборотов. При указанной на схеме емкости конденсатора С2 разгон электродвигателя до мак...

Для схемы "Преобразователь постоянного тока, формирующий два напряжения"

ЭлектропитаниеПреобразователь тока, формирующий два напряженияSteven Sarns.(Донвер, шт. Колорадо)Передача данных по шине RS-232-C - один из многих примеров, когда надобно иметь небольшую плату, обеспечивающую как положительное, так и отрицательное напряжение питания. Схема, приведенная на рисунке, удовлетворяет указанным требованиям и содержит существенно меньшее число компонентов, чем подобные устройства, благодаря тому, что она одновременно выполняет функции повышающего и инвертирующего индуктивного преобразователя.Базовая схема такого преобразователя включает в себя источник четырехфазных синхроимпульсов, катушку индуктивности и два переключателя (рис.1). рис.1В течение первой фазы синхроимпульсов катушка индуктивности L запасается энергией через переключатели S1 и S2. Регулятор мощности на тс122 25 В течение второй фазы переключатель S2 размыкается, и энергия передается на шину положительного выходного напряжения. Во пора третьей фазы замыкаются оба переключателя, в результате чего катушка индуктивности снова накапливает энергию. При размыкании переключателя S1 во пора заключительной фазы синхроимпульсов эта энергия передается на отрицательную шину питания.В практической схеме (рис.2) D-триггер U1 формирует четырехфазные синхроимпульсы, а транзисторы Q1 и Q2 выполняют функции переключателей. рис.2При поступлении на вход синхроимпульсов с частотой 8 кГц обеспечивает напряжения ±12 В для питания линейного формирователя ши...

Для схемы "ГЕНЕРАТОР СТАБИЛЬНОГО ТОКА"

Радиолюбителю-конструкторуГЕНЕРАТОР СТАБИЛЬНОГО Генераторами стабильного тока принято называть устройства. выходной ток которых практически не зависит от сопротивления нагрузки. Он может найти применение, например.в омметрах с линейной шкалой. На рис. 1 приведена принципиальная генератора стабильного на двух кремниевых транзисторах. Величина коллекторного транзистора V2 определяется отношениемIк=0,66/R2.Puc.1Например, при R2, равном 2,2 к0м. ток коллектора транзистора V2 будет равен 0,3 мА и остается практически постоянным при изменении сопротивления резистора Rx от 0 до 30 к0м. Схема простого радиопередатчика на 6п45с При необходимости величина постоянного тока может быть увеличена до 3 мА, для этого сопротивление резистора R2 нужно уменьшить до 180 Ом. Дальнейшее подъем при сохранении высокой стабильности его величины как при смене нагрузки, так и при увеличении температуры быть может лишь при использовании трехтранзисторного генератора, показанного на рис.2. При этом транзисторы V2 и V3 должны быть средней мощности, а напряжение второго источника питания - в 2...3 раза больше напряжения питания транзисторов V1, V2. Сопротивление резистора R3 рассчитывается по вышеприведенной формуле, но дополнительно корректируется с учетом разброса характеристик транзисторов. Puc.2"Elektrotehnicar" (СФРЮ), 1976, N 7-8 ...

Для схемы "УКВ гетеродин с ФАПЧ"

Узлы радиолюбительской техникиУКВ гетеродин с ФАПЧГетеродины с фазовой автоподстройкой частоты(ФАПЧ) позволяют довольно простыми средствами решить проблемусоздания высокостабильного источника сигнала переменной частотыдля спортивной УКВ аппаратуры. такого гетеродина приведенана рисунке. Он был применен в приемнике на диапазон 144- 146 МГцс одним преобразованием частоты и промежуточной частотой 10,7МГц.Гетеродин состоит из управляемого генератора натранзисторе V1. опорного кварцевого генератора (КГ) ивысокостабильного генератора диапазона (ГПД), смесителяна транзисторе V3, фазового детектора на диодах V1, V5 иусилителя на микросхеме А1. Схемы на тс106-10 Элементы кварцевогои высокостабильного генератора диапазона на рисунке непоказаны. Управляемый генератор вырабатывает сигнал, изменяющийсяпри подаче управляющего напряжения на варикап V2, в пределах154,7- 156.7 МГц. Сигнал с этого генератора поступает на один иззатворов транзистора V3 и через буферный каскад - на первыйсмеситель приемника. На второй затвор полевого транзистора сопорного кварцевого генератора подается сигнал частотой 161 МГц.Разностный сигнал, частота которого может лежать в пределах4,3-6.3 МГц выделяется на полосовом фильтре L5C10C11L6C12. Этотсигнал совместно с высокочастотным напряжением с генератора диапазона поступает на фазовый детектор. Сигнал ошибки, прошедшийчерез фильтр нижних частот L7C15 и...

Для схемы "Преобразователя постоянного напряжения 12 В в переменное 220 В"

ЭлектропитаниеПреобразователя напряжения 12 В в переменное 220 В Антон Стоилов Предлагается схема преобразователя постоянного напряжения 12 В в переменное 220 В, который при подключении к автомобильному аккумулятору емкостью 44 А-ч может питать 100-ваттную нагрузку в течение 2-3 часов. Он состоит из задающего генератора на симметричном мультивибраторе VT1, VT2, нагруженного на мощные парафазные ключи VT3-VT8, коммутирующие ток в первичной обмотке повышающего трансформатора TV. VD3 и VD4 защищают мощные транзисторы VT7 и VT8 от перенапряжений при работе без нагрузки. Трансформатор выполнен на магнитопроводе Ш36х36, обмотки W1 и W1" имеют по 28 витков ПЭЛ 2,1, a W2 - 600 витков ПЭЛ 0,59, причем сначала мотают W2, а поверх нее двойным проводом (с поставленной задачей достижения симметрии полуобмоток) W1. При налаживании триммером RP1 добиваются минимальных искажений формы выходного напряжения "Радио Телевизия Електроника" N6/98, с. 12,13....

Для схемы "Универсальный регулятор напряжения и зарядно-пусковое устройство для"

Довольно часто в радиолюбительской практике возникает необходимость регулировки переменного напряжения в пределах 0...220 В. Широко используются для этой цели ЛАТРы (автотрансформаторы). Но их век уже прошел и на смену этим громоздким аппаратам пришли современные тиристорные регуляторы, которые имеют один недостаток: напряжение в таких устройствах регулируется путем изменения длительности импульсов переменного напряжения. Из-за этого к ним невозможно подключить высокоиндуктивную нагрузку (например, трансформатор или дроссель, а также любое другое радиоустройство, содержащее в себе перечисленные выше элементы).От этого недостатка свободен регулятор напряжения, приведенный на рисунке. Он сочетает в себе: устройство защиты от токовых перегрузок, тиристорный регулятор напряжения с мостовым регулятором, рослый КПД (92...98%). Кроме того, регулятор работает совместно с мощным трансформатором и выпрямителем, который может быть использован для заАвтоматическое отключение радиоаппаратуры рядки автомобильных аккумуляторов и в качестве пускового устройства при разряженной АБ.Основные параметры регулятора напряжения:Номинальное напряжение питания, В 220 ± 10%; Выходное напряжение переменного тока, В 0...215; КПД, не менее, процент(ов) 92; Максимальная мощность нагрузки, кВт 2.Основные параметры зарядно-пускового устройства: Выходное напряжение постоянного тока, В 0...40; Постоянный ток, потребляемый нагрузкой, А 0...20; Пусковой ток (при длительности пуска 10 c), A 100.Переключателем SA2 выбирается либо регулировка переменного напряжения в пределах 0...98% от сетевого,...

Для схемы "Тиристорное реле указателя поворотов"

Автомобильная электроникаТиристорное реле указателя поворотовг. Казань А. СТАХОВБесконтактное реле сигнализации поворотов автомобиля может быть сконструировано с использованием кремниевых управляемых диодов - тиристоров. Схема такого реле показана на рисунке.Реле представляет собой обычный мультивибратор на транзисторахТ1 и Т2;, частота переключения которого определяет частоту мигания ламп, так как тот самый мультивибратор управляет выключателем на тиристорах Д1 и Д4.В мультивибраторе могут работать любые маломощные низкочастотные транзисторы.При подключении переключателем П1 сигнальных ламп переднего и заднего подфарников сигнал мультивибратора открывает тиристор Д1 и напряжение аккумуляторной батареи прикладывается к сигнальным лампам. При этом правая обкладка конденсатора С1 заряжается положительно (относительно левой обкладки) через резистор R5. Схема терморегулятора на симисторе Когда запускающий импульс мультивибратора подается на тиристор Д4, то тот самый тиристор открывается и заряженный конденсатор C1 оказывается подсоединенным к тиристору Д1 так, что он мгновенно получает обратное напряжение между анодом и катодом. Это обратное напряжение закрывает тиристор Д1, что прерывает ток в нагрузке. Следующий запускающий импульс мультивибратора снова открывает тиристор Д1 и весь процесс повторяется. Диоды Д223 применены для ограничения отрицательных выбросов тока и улучшения запуска тиристоров.В выключателе могут быть применены любые маломощные тиристоры с любыми буквенными индексами. При использовании ти...

Для схемы "Утюг со звуковой индикацией нагрева"

Предлагаю простой способ замены световой индикации нагрева спирали утюга на звуковую.Микросхему DD1, уже спаянную с динамиком ВА, я взял из музыкальной открытки. Она питается от элемента СЦ21 1,5 В постоянного тока, а лампочка в утюге от 1,5 В переменного тока, поэтому в схему надобно включить диод VD1 КД105Б и конденсатор С1. Мелодия в открытке включалась соединением двух контактов, поэтому их надобно спаять между собой. Этим мы установили режим "начало мелодии". Вынув компонент питания из схемы, освобождаем выводы 1 и 2 для последующего соединения с контактами утюга. К одному из выводов припаиваем диод.Собранная схема подключается к контактам лампочки и закрепляется внутри корпуса утюга. Проверяется схема включением утюга в сеть (мелодия включается) и нагревом спирали до определенной температуры, после чего мелодия выключается, сигнализируя о выключении спирали.Д.Печеньков, Минский р-он...

Для схемы "Микропередатчик со стабилизатором тока"

Радиошпион - Микропередатчик со стабилизатором Схема проста в настройке и изготовлении, позволяет изменять частоту в широких пределах.Устройствосохраняет роботоспособность при величине питающего напряжения више 1В.Рис.1...

Осложнен возникающими при пуске большими значениями пусковых токов и моментов. Но в отличие от асинхронных двигателей, в ДПТ пусковые токи превышают номинальные в 10-40 раз. Такое громадное превышение может привести к выводу двигателя из строя, повреждению связанных с двигателем механизмов и большим просадкам напряжения в сети, что может сказаться на других потребителях. Поэтому пусковые токи стараются ограничить до значений (1,5…2) Iн.

Для маломощных двигателей (до 1 кВт) при условии отсутствия нагрузки на валу, можно применить прямой пуск, то есть непосредственно от сети. Это связано с тем что масса движущихся частей двигателя не велика, а сопротивление обмотки относительно большое. При прямом пуске таких двигателей пусковые токи не превышают значений (3…5) Iн, что для таких двигателей не критично.

Когда двигатель работает при постоянном напряжении и сопротивлении обмотки якоря, ток в якоре можно найти с помощью формулы

В этой формуле U – напряжение питающей сети, Епр – противоЭДС, ∑r – сопротивление обмоток якоря. ПротивоЭДС Епр возникает при вращении якоря в магнитном поле статора, при этом в двигателе, она направлена против якоря. Но когда якорь не движется, Епр не возникает, а значит, выражение для тока примет следующий вид

Это и есть выражение для определения пускового тока.

Глядя на формулу можно прийти к выводу, что снижения пускового тока возможно либо снижением напряжения, либо увеличением сопротивления якорной обмотки.

Пуск двигателя снижением напряжения применяется, если питание двигателя организовано от независимого источника энергии, который можно регулировать. На практике такой пуск используется для двигателей средней и большой мощности.

Мы рассмотрим более подробно способ пуска двигателя постоянного тока с помощью введения дополнительного сопротивления в цепь якоря. При этом пусковой ток будет равен

Таким образом, можно добиться величины пускового тока, в нужном диапазоне, безопасном для двигателя. Добавочное сопротивление может быть как в виде реостата, так и в виде нескольких резисторов. Это нужно для того, чтобы в процессе запуска двигателя, менять сопротивление в якорной цепи.

Следует знать, что с дополнительным сопротивлением в обмотке якоря двигатель работает не на естественной, а на более мягкой искусственной характеристике, которая не подходит для нормальной работы двигателя.

Пуск двигателя осуществляется в несколько ступеней. После некоторого разгона двигателя, Епр ограничит ток, а следовательно пусковой момент, чтобы поддержать его на прежнем уровне, нужно уменьшить сопротивление, то есть переключить реостат или шунтировать резистор.

Допустим, что ступени у нас четыре, тогда механическая характеристика будет выглядеть следующим образом

На первой ступени, когда добавочное сопротивление максимально и равно R1+R2+R3 двигатель начинает свой разгон. После достижения определенной точки, которую получают с помощью расчетных данных, сопротивление R3 шунтируют. При этом двигатель переходит на новую характеристику, и разгоняется на ней все до той же точки. Таким образом, двигатель выходит на естественную характеристику, не пострадав от действия больших пусковых токов и моментов.

До этого я никогда не делал устройство плавного пуска. Чисто теоретически, я представлял, как реализовать эту функцию на симисторе, правда такой вариант не без недостатков - потеря мощности и необходим теплоотвод.
Блуждая по пыльным китайским лабазам, в тщетных попытках в залежах контрафакта и неликвида отыскать что-нибудь стоящее, но не дорогое, наткнулся я на этот товар.

Бла-бла-бла

Покупка не была ради покупки, а осознанная необходимость. Задумал я написать обзор в стол поставить ручной фрезер. А он у меня без плавного пуска, стартует резко, саморазрушаясь и руша окружающее его. Мягкий старт и плавный пуск разве не одно и тоже? Сомнения конечно были, хотя я с терморезисторами дел не имел, видел их только в блоках питания компьютеров, всегда думал, что они реагируют на «скачки и всплески», т. е. быстро, но «the voltage to rise slowly» и «after about five seconds» зародили червь сомнения. Да еще и “or other high starting current machine applications.»
Поскольку отсутствие знаний делает нас расточительными и решительными, я заказал этот девайс и не на секунду об этом не пожалел.


Вот что пишет про него продавец:
Мягкий старт блока питания для усилителя класса А, обещая: 4 кВт мощности и 40 А через контакты реле при напряжении AC от 150 В до 280 В. Размер 67 мм x 61 мм x 30 мм, продавец называет его ультра-маленьким – а-ха-ха. Как бы мой фрезер по току в рамки попадает, даже если разделить китайские амперы на два, но в таком размере внутрь корпуса инструмента плата невпихуема.
И, да, это конструктор. Нужно паять!


Товар пришел в таком виде, плюс еще для лучшей сохранности был завернут в обрывок газеты на китайском/корейском/японском языке, который пропал, опрос домочадцев и многочисленной челяди ясности не внес, кому и для каких надобностей этот клочек понадобился, поэтому фото газеты нет, сверху был еще пакетик без всякой пупырки.
Паять легко - все нарисовано и подписано.


Плата - может кому пригодится


Спаял:


Обратная сторона


Набросал принципиальную схему


Как работает: при включении у R2 сопротивление большое, напряжение на нагрузке меньше чем 220 V, терморезистор нагревается, сопротивление его стремится к нулю, а напряжение на нагрузке к 220 V. Соответственно двигатель набирает обороты.


Одновременно с этим выпрямленное и стабилизированное VD2 напряжение (24 V, хотя по первому попавшемуся даташиту должно быть 25, но вольт туда, вольт сюда…) запитывает схему включения реле. Через R1 заряжается конденсатор C3, емкость которого определяет время срабатывания реле. Через 5 секунд открывается транзистор VT2, контакты реле шунтируют терморезистор R2 и двигатель работает на максимальной мощности.
Гладко было на бумаге… В реальности подключение данного устройства никакого плавного пуска двигателю не обеспечивает, терморезистор нагревается мгновенно, мотор сразу молотит почем зря, только реле издевательски щелкает через 5 секунд. Пробовал двигатель на 150 Вт - эффект тот же.


Бла-бпа-бла

Ругал на чем свет стоит китайского купца. Домашние животные, дошколята и приживалки, наблюдавшие за экспериментом, разбежались и попрятались по темным углам, теща на всякий случай достала из рукава пестик. А вот не надо вводить в заблуждение доверчивых русских покупателей. Допил одонки из бутылки, оставшейся с позапрошлой коронации, закусил холодной кулебякой, успокоился… Достал из помойного ведра плату, обобрал с нее подсолнечную шелуху.


«Если работа проваливается, то всякая попытка ее спасти ухудшит дело», - утверждает Эдвард Мерфи. «Слишком много людей ломаются, даже не подозревая о том, насколько близко к успеху они были в тот момент, когда упали духом,» - спорит с ним Томас Эдисон. Эти две цитаты никакого отношения к делу не имеют, приведены здесь, чтобы показать, что автор отчета не просто охотник за халявой и тупой потребитель китайских товаров, а человек начитанный, приятный собеседник и интеллектуал. Фигли. Но к делу.
Завалялись у меня в чулане на антресолях в шляпной коробке пара микросхем К1182ПМ1Р.

Выжимка из даташита:

Непосредственное применение ИС - для плавного включения и выключения электрических ламп накаливания или регулировки их яркости свечения. Так же успешно ИС может применяться для регулировки скорости вращения электродвигателей мощностью до 150 Вт (например, вентиляторами) и для управления более мощными силовыми приборами (тиристорами) .


На одной из них я и собрал устройство плавного пуска, которое не лишено недостатков, но работает, как надо.


С1 задает время плавного включения, R1 величину напряжения на нагрузке. У меня максимальное напряжение при 120 ом получилось. При С1 100 мкФ время разгона около 2-х секунд. Поменяв R1 на переменный можно регулировать обороты коллекторного двигателя, без обратной связи естественно (хотя так реализовано на подавляющем большинстве продаваемого электроинструмента). Симистор VS1 любой нашедшейся, подходящий по мощности. У меня завалялся BTA16 600B.


Обратная сторона


Все работает.


Теперь осталось скрестить два устройства, которые взаимно дополняют друг друга, сводя на нет недостатки присущие каждому в отдельности.

Бла-бла-бла




В принципе задача несложная для живого, пытливого ума. Выпаял термистор, и выбросил его спрятал до лучших времен, на его место впаял два проводка идущие от катода и анода симистора второй платы. Уменьшил емкость С3 на первой плате до 22 мкФ, что бы реле замыкало катод и анод симистора не через 5 секунд, а примерно через две.



При температуре воздуха 30 град. С температура диодного моста 50 град., стабилитрона 65 град., реле 40 град.
Все - переделка закончена.

Бла-бла-бла

Другой бы, менее уверенный в своих силах, обрадовался бы результату, закатил бы пир горой, устроил бы праздник с медведями и цыганами. Я же просто открыл бутылочку шампанского, заставил девок плясать хороводы во дворе и отменил субботнюю порку.


Осталось только оформить это все в корпус, уже было хотел, но что-то дома нет пластинки металлической, с помощью которой корпус будет крепиться к столу. Выглядеть будет все примерно так:


Мои выводы неоднозначны, оценки предвзяты, рекомендации сомнительны.
Все устал, еще эти коты все время в кадр лезли – замучился гонять. Планирую купить +21 Добавить в избранное Обзор понравился +92 +163

Плавный пуск асинхронного двигателя – это всегда трудная задача, потому что для запуска индукционного мотора требуется большой ток и крутящий момент, которые могут сжечь обмотку электродвигателя. Инженеры постоянно предлагают и реализуют интересные технические решения для преодоления этой проблемы, например, использование схемы включения , автотрансформатора и т. д.

В настоящее время подобные способы применяются в различных промышленных установках для бесперебойного функционирования электродвигателей.

Из физики известен принцип работы индукционного электродвигателя, вся суть которого заключается в использовании разницы между частотами вращения магнитных полей статора и ротора. Магнитное поле ротора, пытаясь догнать магнитное поле статора, способствует возбуждению большого пускового тока. Мотор работает на полной скорости, при этом значение крутящего момента вслед за током тоже увеличивается. В результате обмотка агрегата может быть повреждена из-за перегрева.

Таким образом, необходимой становится установка мягкого стартера. УПП для трехфазных асинхронных моторов позволяют защитить агрегаты от первоначального высокого тока и крутящего момента, возникающих вследствие эффекта скольжения при работе индукционного мотора.

Преимущественные особенности применения схемы с устройством плавного пуска (УПП):

  1. снижение стартового тока;
  2. уменьшение затрат на электроэнергию;
  3. повышение эффективности;
  4. сравнительно низкая стоимость;
  5. достижение максимальной скорости без ущерба для агрегата.

Как плавно запустить двигатель?

Существует пять основных методов плавного пуска.

  • Высокий крутящий момент может быть создан путем добавления внешнего сопротивления в цепь ротора, как показано на рисунке.

  • С помощью включения в схему автоматического трансформатора можно поддерживать пусковой ток и крутящий момент за счет уменьшения начального напряжения. Смотрите рисунок ниже.

  • Прямой запуск – это самый простой и дешевый способ, потому что асинхронный двигатель подключен напрямую к источнику питания.
  • Соединения по специальной конфигурации обмоток – способ применим для двигателей, предназначенных для эксплуатации в нормальных условиях.

  • Использование УПП – это наиболее передовой способ из всех перечисленных методов. Здесь полупроводниковые приборы, такие как тиристоры или тринисторы, регулирующие скорость асинхронного двигателя, успешно заменяют механические компоненты.

Регулятор оборотов коллекторного двигателя

Большинство схем бытовых аппаратов и электрических инструментов создано на базе коллекторного электродвигателя 220 В. Такая востребованность объясняется универсальностью. Для агрегатов возможно питание от постоянного либо переменного напряжения. Достоинство схемы обусловлены обеспечением эффективного пускового момента.

Чтобы достичь более плавного пуска и обладать возможностью настройки частоты вращения, применяются регуляторы оборотов.

Пуск электродвигателя своими руками можно сделать, к примеру, таким образом.

Характерным для любого электродвигателя в процессе запуска является многократное превышение тока и механической нагрузки на приводимое в действие оборудование. При этом также возникают перегрузки питающей сети, создающие просадку напряжения и ухудшающие качество электроэнергии. Во многих случаях требуется устройство плавного пуска (УПП).

Необходимость плавного пуска электродвигателей

Статорная обмотка является катушкой индуктивности, состоящей из активного сопротивления и реактивного. Значение последнего зависит от частоты подаваемого напряжения. При запуске двигателя реактивное сопротивление изменяется от нуля, а пусковой ток имеет большую величину, многократно превышающую номинальный. Момент вращения также велик и может разрушить приводимое в движение оборудование. В режиме торможения также появляются броски тока, приводящие к повышению температуры статорных обмоток. При аварийной ситуации, связанной с перегревом двигателя, возможен ремонт, но параметры трансформаторной стали изменяются и номинальная мощность снижается на 30 %. Поэтому необходим плавный пуск.

Запуск электродвигателя переключением обмоток

Обмотки статора могут соединяться "звездой" и "треугольником". Когда у двигателя выведены все концы обмоток, можно снаружи коммутировать схемы "звезда" и "треугольник".

Устройство плавного пуска электродвигателя собирается из 3 контакторов, реле нагрузки и времени.

Электродвигатель запускается по схеме "звезда", когда контакты К1 и К3 замкнуты. Через интервал, заданный реле времени, К3 отключается и производится подключение схемы "треугольник" контактором К2. При этом двигатель выходит на полные обороты. Когда он разгоняется до номинальных оборотов, пусковые токи не такие большие.

Недостатком схемы является возникновение короткого замыкания при одновременном включении двух автоматов. Этого можно избежать, применив вместо них рубильник. Для организации реверса нужен еще один блок управления. Кроме того, по схеме "треугольник" электродвигатель больше нагревается и жестко работает.

Частотное регулирование скорости вращения

Вал электродвигателя вращается магнитным полем статора. Скорость зависит от частоты питающего напряжения. Электропривод будет работать эффективней, если дополнительно менять напряжение.

В состав устройства плавного пуска асинхронных двигателей может входить частотный преобразователь.

Первой ступенью устройства является выпрямитель, на который подается напряжение трехфазной или однофазной сети. Он собирается на диодах или тиристорах и предназначен для формирования пульсирующего напряжения постоянного тока.

В промежуточной цепи пульсации сглаживаются.

В инверторе выходной сигнал преобразуется в переменный заданной частоты и амплитуды. Он работает по принципу изменения амплитуды или ширины импульсов.

Все три элемента получают сигналы от электронной схемы управления.

Принцип действия УПП

Увеличение пускового тока в 6-8 раз и вращающего момента требуют применения УПП для выполнения следующих действий при запуске или торможении двигателя :

  • постепенное увеличение нагрузки;
  • снижение просадки напряжения;
  • управление запуском и торможением в определенные моменты времени;
  • снижение помех;
  • защита от скачков напряжения, при пропадании фазы и др.;
  • повышение надежности электропривода.

Устройство плавного пуска двигателя ограничивает величину напряжения, подаваемого в момент пуска. Оно регулируется путем изменения угла открытия симисторов, подключенных к обмоткам.

Пусковые токи необходимо снижать до величины, не более чем в 2-4 раза превышающей номинал. Наличие байпасного контактора предотвращает перегрев симисторов после его подключения после того, как двигатель раскрутится. Варианты включения бывают одно-, двух- и трехфазные. Каждая схема функционально отличается и имеет разную стоимость. Наиболее совершенным является трехфазное регулирование. Оно наиболее функционально.

Недостатки УПП на симисторах:

  • простые схемы применяются только с небольшими нагрузками или при холостом запуске;
  • продолжительный запуск приводит к перегреву обмоток и полупроводниковых элементов;
  • момент вращения вала снижается и двигатель может не запуститься.

Виды УПП

Наиболее распространены регуляторы без обратной связи по двум или трем фазам. Для этого предварительно устанавливается напряжение и время пуска. Недостатком является отсутствие регулирования момента по нагрузке на двигатель. Эту проблему решает устройство с обратной связью наряду с выполнением дополнительных функций снижения пускового тока, создания защиты от перекоса фаз, перегрузки и пр.

Наиболее современные УПП имеют цепи непрерывного слежения за нагрузкой. Они подходят для тяжело нагруженных приводов.

Выбор УПП

Большинство УПП - это регуляторы напряжения на симисторах, различающиеся функциями, схемами регулирования и алгоритмами изменения напряжения. В современных моделях софтстартеров применяются фазовые методы регулирования электроприводов с любыми режимами пуска. Электрические схемы могут быть с тиристорными модулями на разное количество фаз.

Одно из самых простых - это устройство плавного пуска с однофазным регулированием через один симистор, позволяющее только смягчать механические ударные нагрузки двигателей мощностью до 11 кВт.

Двухфазное регулирование также смягчает механические удары, но не ограничивает токовые нагрузки. Допустимая мощность двигателя составляет 250 кВт. Оба способа применяются из расчета приемлемых цен и особенностей конкретных механизмов.

Многофункциональное устройство плавного пуска с трехфазным регулированием имеет самые лучшие технические характеристики. Здесь обеспечивается возможность динамического торможения и оптимизации его работы. В качестве недостатков можно отметить только большие цены и габариты.

В качестве примера можно взять устройство плавного пуска Altistart. Можно подобрать модели для запуска асинхронных двигателей, мощность которых достигает 400 кВт.

Устройство выбирается по номинальной мощности и режиму работы (нормальный или тяжелый).

Выбор УПП

Основными параметрами, по которым выбираются устройства плавного пуска, являются:

  • предельная сила тока УПП и двигателя должны быть правильно подобраны и соответствовать друг другу;
  • параметр количества запусков в час задается как характеристика софтстартера и не должен превышаться при эксплуатации двигателя;
  • заданное напряжение устройства не должно быть меньше сетевого.

УПП для насосов

Устройство плавного пуска для насоса предназначено преимущественно для снижения гидравлических ударов в трубопроводах. Для работы с приводами насосов подходят УПП Advanced Control. Устройства практически полностью устраняют гидроудары при заполненных трубопроводах, позволяя увеличить ресурс оборудования.

Плавный запуск электроинструментов

Для электроинструмента характерны высокие динамические нагрузки и большие обороты. Его наглядным представителем является угловая шлифовальная машинка (УШМ). На рабочий диск действуют значительные силы инерции в начале вращения редуктора. Большие перегрузки по току возникают не только при запуске, но и при каждой подаче инструмента.

Устройство плавного пуска электроинструмента применяется только для дорогих моделей. Экономичным решением является его установка своими руками. Это может быть готовый блок, который помещается внутри корпуса инструмента. Но многие пользователи собирают простую схему самостоятельно и подключают ее в разрыв питающего кабеля.

При замыкании цепи двигателя, на регулятор фазы КР1182ПМ1 подается напряжение и начинает заряжаться конденсатор С2. За счет этого симистор VS1 включается с задержкой, которая постепенно уменьшается. Ток двигателя плавно нарастает и обороты набираются постепенно. Двигатель разгоняется примерно за 2 сек. Мощность, отдаваемая в нагрузку, достигает 2,2 кВт.

Устройство можно применять для любого электроинструмента.

Заключение

Выбирая устройство плавного пуска, необходимо анализировать требования к механизму и характеристикам электродвигателя. Характеристики производителя находятся в прилагаемой к оборудованию документации. Ошибки при выборе быть не должно, поскольку нарушится функционирование устройства. Важен учет диапазона скоростей, чтобы выбрать лучшее сочетание преобразователя и двигателя.

Загрузка...