Автомобильный портал - ZadonskVokzal

Прибор для определения полярности стабилитронов. Проверка стабилитронов на большое напряжение

В радиолюбительской практике бывает накапливается много мелких стеклянных диодов, у которых не всегда понятные обозначения, среди них могут попадаться и стабилитроны. Для отыскания таковых и предназначен подобный тестер, а так же для выявления более точных стабилизирующих данных проверяемого стабилитрона. Смысл этого прибора - в проверке неизвестных стабилитронов, которые могут быть на напряжение выше 30 вольт, а значит обычным блоком питания или тестером их испытать не получится.

Схема была срисована с другой, взятой из интернета, упрощена и дорисована под цифровой индикатор 0-100 В из Китая, с обозначением выводов так как не многие понимают как его тут подключать. Конечно, если они есть в продаже и недорого стоят, то почему бы и не использовать, получается компактное и функциональное полезное для радиолюбителя устройство которое порой очень необходимо.

За основу тестера был взят корпус от БП сигнализации МИП-Р, можно взять любой другой - подходящий по размерам. На передней панели планируется закрепить платку с панелькой для микросхем, и ещё одну платку для проверки cmd стабилитронов. Поскольку само устройство получилось очень компактным, встроить его можно куда удобно, размеры будут зависеть только от применяемого аккумулятора.

Для прибора разработана маленькая платка , на которой установлены все детали. Трансформатор взят готовый от ЗУ сотового телефона, вторичная повышающая обмотка на нём отмечена с самым большим сопротивлением.

Выше смотрите на результат проверки работы устройства, тест стабилитрона на 5,1 В.

Давно снимал видео на тему тестера для стабилитронов, устройство довольно популярно и пользуется спросом среди радиолюбителей, поэтому решил написать эту статью.

В отличие от ранее указанного ролика, в этом проекте использованы готовые модули из Китая, что облегчает сборку.

Итак для начала о компонентах, забегая вперед скажу, что затрат всего на пару долларов, а все ссылки на покупку нужных компонентов будут в конце статьи.

Понадобиться нам повышающий DC-DC конвертор на базе микросхемы MT3608.

Плата позволяет получить выходное напряжение 28-30 Вольт, минимальное входное напряжение 2-2,5Вольт.

Вторая платка тоже из китая, это контроллер заряда для одной банки литий-ионного аккумулятора с защитой, построен на базе микросхемы TP4056.

Литий ионный аккумулятор, подойдет любой стандарт, хоть от мобильного телефона.

В моем же варианте аккумулятор заменен на перезаряжаемые никель-металл-гидридный аккумулятор, батарейки стандарта ААА, взял 3 штуки, потом подключил последовательно, в итоге получил аналог одной банки литий-ионного аккумулятора. Обусловлено такое решение ограниченным пространством в корпусе.

Сам корпус решил сделать компактным, донором послужил дешевый power bank за доллар, позже корпус местами подточил, чтобы начинка влезла.

Нам также нужен мини цифровой вольтметр, в моем случае этот вольтметр измеряет напряжение до 32-х вольт, и не имеет третьего провода (измерительный), т.е. подключается напрямую к источнику питания, в нашем случае к стабилитрону, чтобы измерить напряжение стабилизации последнего.

Нужно помнить, что вольтметр потребляет некоторый ток, поэтому, чтобы не перегружать стабилитрон, желательно использовать вольтметр с тремя проводками - два провода питания и один для измерителя.
Именно мой вольтметр легко переделать под три провода, китайцы просто замкнули плюс питания с измерительным проводом.

Кстати, для работы таких вольтметров нужно напряжение не мене 4-х вольт, для того, чтобы показания были корректными, минимальное напряжение питания должно быть в районе 4,5-5 вольт, максимальное - 32 вольта, поэтому вольтметр питается напрямую с выхода повышающего преобразователя, напряжение аккумулятора недостаточно.

В связи с этим наш прибор может тестировать стабилитроны, напряжение стабилизации которых не более 30 вольт.

Выключатель или кнопка без фиксации, на любой ток, нужна кнопка для включения прибора, тест занимает пару секунд.

Электролитический конденсатор вольт на 50 с емкостью от 10 до 47мкФ, он подключается на выход преобразователя и предназначен для сглаживания пульсаций, это нужно для корректной работы вольтметра.

Резистор 2кОм, нужен для ограничения тока через стабилитрон, иначе последний сгорит. Расчет этого резистора делается исходя из нескольких величин, именно для нашего случая нужен резистор от 2-х до 2,2кОм, мощность 0,25ватт.

Панелька беспаечного монтажа для микросхем в корпусе DIP8, DIP14 или DIP16, особой разницы нет.

В эту панельку ставиться тестируемый стабилитрон.

Итак, модуль повышающего преобразователя на микросхеме MT3608 как уже сказал, может обеспечить максимальное выходное напряжение 28-30В, которое легко можно поднять до 40В.

Смотрим на схему модули этой платки. Видим постоянный резистор подключенный последовательно с подстроечным.

А теперь выпаиваем и на его место ставим перемычку.

Следующим делом подаем на вход платы напряжение около 4-х вольт, имитируя подключенный литиевый аккумулятор, на выход платы подключаем мультиметр, потом и вращаем подстроечный резистор 10 шагов против часовой стрелки.
Должен заметить, что только после 10 шагов модуль начнет повышать напряжение (да, странно, но это не я придумал). Потом смело вращаем подстроечник до напряжение в 35 вольт, после 35 вращаем крайне аккуратно и медленно пока мультиметр не покажет напряжение в 40 Вольт, если повышать дальше, мгновенно растет ток потребления и микросхема сгорит (случится это при напряжении 45-50 Вольт).
Таким образом, наша плата на 30 вольт стала выдавать целых 40вольт, но я крайне не советую так поступать, лучше оставить все как есть.

Дело за малым, собираем все по схеме.

Выключатель был установлен сбоку, панелька и вольтметр были расположены на задней крышке, которая теперь стала лицевой панелью.

Давно снимал видео на тему тестера для стабилитронов, устройство довольно популярно и пользуется спросом среди радиолюбителей, поэтому решил написать эту статью.

В отличие от ранее указанного ролика, в этом проекте использованы готовые модули из Китая, что облегчает сборку.

Итак для начала о компонентах, забегая вперед скажу, что затрат всего на пару долларов, а все ссылки на покупку нужных компонентов будут в конце статьи.

Понадобиться нам повышающий DC-DC конвертор на базе микросхемы MT3608.

Плата позволяет получить выходное напряжение 28-30 Вольт, минимальное входное напряжение 2-2,5Вольт.

Вторая платка тоже из китая, это контроллер заряда для одной банки литий-ионного аккумулятора с защитой, построен на базе микросхемы TP4056.

Литий ионный аккумулятор, подойдет любой стандарт, хоть от мобильного телефона.

В моем же варианте аккумулятор заменен на перезаряжаемые никель-металл-гидридный аккумулятор, батарейки стандарта ААА, взял 3 штуки, потом подключил последовательно, в итоге получил аналог одной банки литий-ионного аккумулятора. Обусловлено такое решение ограниченным пространством в корпусе.

Сам корпус решил сделать компактным, донором послужил дешевый power bank за доллар, позже корпус местами подточил, чтобы начинка влезла.

Нам также нужен мини цифровой вольтметр, в моем случае этот вольтметр измеряет напряжение до 32-х вольт, и не имеет третьего провода (измерительный), т.е. подключается напрямую к источнику питания, в нашем случае к стабилитрону, чтобы измерить напряжение стабилизации последнего.

Нужно помнить, что вольтметр потребляет некоторый ток, поэтому, чтобы не перегружать стабилитрон, желательно использовать вольтметр с тремя проводками - два провода питания и один для измерителя.
Именно мой вольтметр легко переделать под три провода, китайцы просто замкнули плюс питания с измерительным проводом.

Кстати, для работы таких вольтметров нужно напряжение не мене 4-х вольт, для того, чтобы показания были корректными, минимальное напряжение питания должно быть в районе 4,5-5 вольт, максимальное - 32 вольта, поэтому вольтметр питается напрямую с выхода повышающего преобразователя, напряжение аккумулятора недостаточно.

В связи с этим наш прибор может тестировать стабилитроны, напряжение стабилизации которых не более 30 вольт.

Выключатель или кнопка без фиксации, на любой ток, нужна кнопка для включения прибора, тест занимает пару секунд.

Электролитический конденсатор вольт на 50 с емкостью от 10 до 47мкФ, он подключается на выход преобразователя и предназначен для сглаживания пульсаций, это нужно для корректной работы вольтметра.

Резистор 2кОм, нужен для ограничения тока через стабилитрон, иначе последний сгорит. Расчет этого резистора делается исходя из нескольких величин, именно для нашего случая нужен резистор от 2-х до 2,2кОм, мощность 0,25ватт.

Панелька беспаечного монтажа для микросхем в корпусе DIP8, DIP14 или DIP16, особой разницы нет.

В эту панельку ставиться тестируемый стабилитрон.

Итак, модуль повышающего преобразователя на микросхеме MT3608 как уже сказал, может обеспечить максимальное выходное напряжение 28-30В, которое легко можно поднять до 40В.

Смотрим на схему модули этой платки. Видим постоянный резистор подключенный последовательно с подстроечным.

А теперь выпаиваем и на его место ставим перемычку.

Следующим делом подаем на вход платы напряжение около 4-х вольт, имитируя подключенный литиевый аккумулятор, на выход платы подключаем мультиметр, потом и вращаем подстроечный резистор 10 шагов против часовой стрелки.
Должен заметить, что только после 10 шагов модуль начнет повышать напряжение (да, странно, но это не я придумал). Потом смело вращаем подстроечник до напряжение в 35 вольт, после 35 вращаем крайне аккуратно и медленно пока мультиметр не покажет напряжение в 40 Вольт, если повышать дальше, мгновенно растет ток потребления и микросхема сгорит (случится это при напряжении 45-50 Вольт).
Таким образом, наша плата на 30 вольт стала выдавать целых 40вольт, но я крайне не советую так поступать, лучше оставить все как есть.

Дело за малым, собираем все по схеме.

Выключатель был установлен сбоку, панелька и вольтметр были расположены на задней крышке, которая теперь стала лицевой панелью.

Наверняка у многих радиохламеров пылятся в кладовках кучи радиодеталей, неизвестно когда и откуда выпаяных, но внешне похожих на диоды (у меня по-крайней мере так). И многих наверное мучают вопросы: как проверить их исправность, нет ли среди них стабилитронов и, если есть, то как узнать напряжение стабилизации этих стабилитронов. Похожие вопросы возникают и по-поводу выпаянных светодиодов: как узнать живые они или нет, как узнать где у них катод, а где анод (ноги-то у выпаянных светиков одинаковой длины).

Обычные диоды легко прозваниваются большинством мультиметров, но в случае со стабилитронами и светодиодами мультиметры не подходят, — у них слишком маленький тестовый ток и низкое напряжение питания.

Помочь в данном случае может описанное ниже небольшое устройство на весьма распространённой микрухе TL431. По-сути это небольшой источник тока, способный выдавать 2-4 мА, чего уже вполне достаточно для проверки маломощных светодиодов или стабилитронов.

Итак, схема :

  1. R 1 =3,6 кОм, R 2 =510 Ом, R 3 =500 Ом
  2. T 1 — любой маломощный npn транзистор, выдерживающий напряжение Uкэ=30-35 В
  3. Напряжение питания схемы = 9-28 В

Схема работает очень просто — TL-ка управляет транзистором таким образом, чтобы напряжение на её первой ноге было постоянным и равным 2,495 В. Получается, что в большей или меньшей степени открывая транзистор, TL-ка фактически стабилизирует падение напряжения на резисторах R 2 R 3 , а значит и ток через них. Этот ток складывается из тока коллектора и тока базы транзистора, но учитывая, что ток базы значительно меньше тока коллектора, мы можем считать, что ток коллектора тоже получается стабильным. А ток коллектора — это и есть наш тестовый ток, которым мы будем проверять светики и стабилитроны.

Падание напряжения на подопытной детали, при заданном тестовом токе, нужно измерять между точками test+ и test-. Для стабилитронов это и будет искомое напряжение стабилизации (это если правильно включили, иначе мультик покажет падение на pn-переходе в прямом направлении).

Подстроечный резистор позволяет в некоторых пределах менять тестовый ток. С указанными номиналами мы можем менять его от 2,495/(510+500)=2,47 мА до 2,495/510=4,9 мА.

Резистор R 1 рассчитывается исходя из того, что напряжение на 3-й ноге TL-ки при любом напряжении питания должно быть примерно на 0,5 В выше, чем напряжение на первой ноге (выше на величину Uбэ транзистора) и при этом ток через TL-ку должен быть в рабочих пределах (1-100 мА по даташиту). Ну и конечно желательно, чтобы этот резистор поменьше грелся.

С указанными значениями R 1 и напряжения питания, ток через TL-ку будет меняться от (9-0,5-2,495)/3,6 = 1,67 мА до (28-0,5-2,495)/3,6 = 6,95 мА, что вписывается в диапазон рабочего тока TL-ки. Причём вписывается как раз ближе к минимальной границе, что обеспечивает минимальный нагрев.

Следует учесть, что напряжение питания схемы определяет максимальное напряжение стабилизации, которое мы можем проверить (оно примерно на 3-3,5 В ниже напряжения питания). То есть, например, при 9-ти вольтовом питании схемы, мы сможем проверять только стабилитроны с напряжением стабилизации до 5,5-6 В (например на 4,7 В или на 5,1 В), а при 28-вольтовом питании можно проверять стабилитроны с напряжением стабилизации до 24,5-25 В.

Фото готового устройства :

Скачать плату (DipTrace, разводка под SMD)

В качестве клемм test+, test- я использовал держатель для миниатюрных круглых предохранителей, в качестве блока питания — ноутбучную зарядку на 19,5 Вольт (для тех, кто читал ветку про , — да, да, ту самую ноутбучную зарядку.)

Если такой чудной зарядки у вас нет, то можно изготовить самодельный повышающий преобразователь (). Преобразователь нужен маломощный, токи-то в нашей схеме всего лишь миллиамперные.

Вот в общем-то и всё, удачи.

Загрузка...