Автомобильный портал - ZadonskVokzal

Простой индикатор заряда и разряда аккумулятора. Индикаторы и сигнализаторы на микросхеме TL431 (К142ЕН19) Индикатор разряда аккумулятора на tl431

Что может быть печальнее, чем внезапно севший аккумулятор в квадрокоптере во время полета или отключившийся металлоискатель на перспективной поляне? Вот если бы можно было бы заранее узнать, насколько сильно заряжен аккумулятор! Тогда мы могли бы подключить зарядку или поставить новый комплект батарей, не дожидаясь грустных последствий.

И вот тут как раз рождается идея сделать какой-нибудь индикатор, который заранее подаст сигнал о том, что батарейка скоро сядет. Над реализацией этой задачи пыхтели радиолюбители всего мира и сегодня существует целый вагон и маленькая тележка различных схемотехнических решений - от схем на одном транзисторе до навороченных устройств на микроконтроллерах.

Внимание! Приведенные в статье схемы только лишь сигнализируют о низком напряжении на аккумуляторе. Для предупреждения глубокого разряда необходимо вручную отключить нагрузку либо использовать .

Вариант №1

Начнем, пожалуй, с простенькой схемки на стабилитроне и транзисторе:

Разберем, как она работает.

Пока напряжение выше определенного порога (2.0 Вольта), стабилитрон находится в пробое, соответственно, транзистор закрыт и весь ток течет через зеленый светодиод. Как только напряжение на аккумуляторе начинает падать и достигает значения порядка 2.0В + 1.2В (падение напряжение на переходе база-эмиттер транзистора VT1), транзистор начинает открываться и ток начинает перераспределяться между обоими светодиодами.

Если взять двухцветный светодиод, то мы получим плавный переход от зеленого к красному, включая всю промежуточную гамму цветов.

Типовое различие прямого напряжения в двухцветных светодиодах составляет 0.25 Вольта (красный зажигается при более низком напряжении). Именно этой разницей определяется область полного перехода между зеленым и красным цветом.

Таким образом, не смотря на свою простоту, схема позволяет заранее узнать, что батарейка начала подходить к концу. Пока напряжение на аккумуляторе составляет 3.25В или более, горит зеленый светодиод. В промежутке между 3.00 и 3.25V к зеленому начинает подмешиваться красный - чем ближе к 3.00 Вольтам, тем больше красного. И, наконец, при 3V горит только чисто красный цвет.

Недостаток схемы в сложности подбора стабилитронов для получения необходимого порога срабатывания, а также в постоянном потреблении тока порядка 1 мА. Ну и, не исключено, что дальтоники не оценят эту задумку с меняющимися цветами.

Кстати, если в эту схему поставить транзистор другого типа, ее можно заставить работать противоположным образом - переход от зеленого к красному будет происходить, наоборот, в случае повышения входного напряжения. Вот модифицированная схема:

Вариант №2

В следующей схеме использована микросхема TL431, представляющая собой прецизионный стабилизатор напряжения.

Порог срабатывания определяется делителем напряжения R2-R3. При указанных в схеме номиналах он составляет 3.2 Вольта. При снижении напряжения на аккумуляторе до этого значения, микросхема перестает шунтировать светодиод и он зажигается. Это будет сигналом к тому, что полный разряд батареи совсем близок (минимально допустимое напряжение на одной банке li-ion равно 3.0 В).

Если для питания устройства применяется батарея из нескольких последовательно включенных банок литий-ионного аккумулятора, то приведенную выше схему необходимо подключить к каждой банке отдельно. Вот таким образом:

Для настройки схемы подключаем вместо батарей регулируемый блок питания и подбором резистора R2 (R4) добиваемся зажигания светодиода в нужный нам момент.

Вариант №3

А вот простая схема индикатора разрядки li-ion аккумулятора на двух транзисторах:
Порог срабатывания задается резисторами R2, R3. Старые советские транзисторы можно заменить на BC237, BC238, BC317 (КТ3102) и BC556, BC557 (КТ3107).

Вариант №4

Схема на двух полевых транзисторах, потребляющая в ждущем режиме буквально микротоки.

При подключении схемы к источнику питания, положительное напряжение на затворе транзистора VT1 формируется с помощью делителя R1-R2. Если напряжение выше напряжение отсечки полевого транзистора, он открывается и притягивает затвор VT2 на землю, тем самым закрывая его.

В определенный момент, по мере разряда аккумулятора, напряжение, снимаемое с делителя становится недостаточным для отпирания VT1 и он закрывается. Следовательно, на затворе второго полевика появляется напряжение, близкое к напряжению питания. Он открывается и зажигает светодиод. Свечение светодиода сигнализирует нам о необходимости подзаряда аккумулятора.

Транзисторы подойдут любые n-канальные с низким напряжением отсечки (чем меньше - тем лучше). Работоспособность 2N7000 в этой схеме не проверялась.

Вариант №5

На трех транзисторах:

Думаю, схема не нуждается в пояснениях. Благодаря большому коэфф. усиления трех транзисторных каскадов, схема срабатывает очень четко - между горящим и не горящим светодиодом достаточно разницы в 1 сотую долю вольта. Потребляемый ток при включенной индикации - 3 мА, при выключенном светодиоде - 0.3 мА.

Не смотря на громоздкий вид схемы, готовая плата имеет достаточно скромные габариты:

С коллектора VT2 можно брать сигнал, разрешающий подключение нагрузки: 1 - разрешено, 0 - запрещено.

Транзисторы BC848 и BC856 можно заменить на ВС546 и ВС556 соответственно.

Вариант №6

Эта схема мне нравится тем, что она не только включает индикацию, но и отрубает нагрузку.

Жаль только, что сама схема от аккумулятора не отключается, продолжая потреблять энергию. А жрет она, благодаря постоянно горящему светодиоду, немало.

Зеленый светодиод в данном случае выступает в роли источника опорного напряжения, потребляя ток порядка 15-20 мА. Чтобы избавиться от такого прожорливого элемента, вместо источника образцового напряжения можно применить ту же TL431, включив ее по такой схеме*:

*катод TL431 подключить ко 2-ому выводу LM393.

Вариант №7

Схема с применением так называемых мониторов напряжения. Их еще называют супервизорами и детекторами напряжения (voltdetector"ами). Это специализированные микросхемы, разработанные специально для контроля за напряжением.

Вот, например, схема, поджигающая светодиод при снижении напряжения на аккумуляторе до 3.1V. Собрана на BD4731.

Согласитесь, проще некуда! BD47xx имеет открытый коллектор на выходе, а также самостоятельно ограничивает выходной ток на уровне 12 мА. Это позволяет подключать к ней светодиод напрямую, без ограничительных резисторов.

Аналогичным образом можно применить любой другой супервизор на любое другое напряжение.

Вот еще несколько вариантов на выбор:

  • на 3.08V: TS809CXD , TCM809TENB713 , MCP103T-315E/TT , CAT809TTBI-G ;
  • на 2.93V: MCP102T-300E/TT , TPS3809K33DBVRG4 , TPS3825-33DBVT , CAT811STBI-T3 ;
  • серия MN1380 (или 1381, 1382 - они отличаются только корпусами). Для наших целей лучше всего подходит вариант с открытым стоком, о чем свидетельствует дополнительная циферка "1" в обозначении микросхемы - MN13801, MN13811, MN13821. Напряжение срабатывания определяется буквенным индексом: MN13811-L как раз на 3,0 Вольта.

Также можно взять советский аналог - КР1171СПхх:

В зависимости от цифрового обозначения, напряжение детекции будет разным:

Сетка напряжений не очень-то подходит для контроля за li-ion аккумуляторами, но совсем сбрасывать эту микросхему со счетов, думаю, не стоит.

Неоспоримые достоинства схем на мониторах напряжения - чрезвычайно низкое энергопотребление в выключенном состоянии (единицы и даже доли микроампер), а также ее крайняя простота. Зачастую вся схема умещается прямо на выводах светодиода:

Чтобы сделать индикацию разряда еще более заметной, выход детектора напряжения можно нагрузить на мигающий светодиод (например, серии L-314). Или самому собрать простейшую "моргалку" на двух биполярных транзисторах.

Пример готовой схемы, оповещающей о севшей батарейке с помощью вспыхивающего светодиода приведен ниже:

Еще одна схема с моргающим светодиодом будет рассмотрена ниже.

Вариант №8

Крутая схема, запускающая моргание светодиода, если напряжение на литиевом аккумуляторе упадет до 3.0 Вольта:

Эта схема заставляет вспыхивать сверхяркий светодиод с коэффициентом заполнения 2.5% (т.е. длительная пауза - коротка вспышка - опять пауза). Это позволяет снизить потребляемый ток до смешных значений - в выключенном состоянии схема потребляет 50 нА (нано!), а в режиме моргания светодиодом - всего 35 мкА. Сможете предложить что-нибудь более экономичное? Вряд ли.

Как можно было заметить, работа большинства схем контроля за разрядом сводится к сравнению некоего образцового напряжения с контролируемым напряжением. В дальнейшем эта разница усиливается и включает/отключает светодиод.

Обычно в качестве усилителя разницы между опорным напряжением и напряжением на литиевом аккумуляторе используют каскад на транзисторе или операционный усилитель, включенный по схеме компаратора.

Но есть и другое решение. В качестве усилителя можно применить логические элементы - инверторы. Да, это нестандартное использование логики, но это работает. Подобная схема приведена в следующем варианте.

Вариант №9

Схема на 74HC04.

Рабочее напряжение стабилитрона должно быть ниже напряжение срабатывания схемы. Например, можно взять стабилитроны на 2.0 - 2.7 Вольта. Точная подстройка порога срабатывания задается резистором R2.

Схема потребляет от батареи около 2 мА, так что ее тоже надо включать после выключателя питания.

Вариант №10

Это даже не индикатор разряда, а, скорее, целый светодиодный вольтметр! Линейная шкала из 10 светодиодов дает наглядное представление о состоянии аккумулятора. Весь функционал реализован всего на одной-единственной микросхеме LM3914 :

Делитель R3-R4-R5 задает нижнее (DIV_LO) и верхнее (DIV_HI) пороговые напряжения. При указанных на схеме значениях свечению верхнего светодиода соответствует напряжение 4.2 Вольта, а при снижении напряжения ниже 3х вольт, погаснет последний (нижний) светодиод.

Подключив 9-ый вывод микросхемы на "землю", можно перевести ее в режим "точка". В этом режиме всегда светится только один светодиод, соответствующий напряжению питания. Если оставить как на схеме, то будет светиться целая шкала из светодиодов, что нерационально с точки зрения экономичности.

В качестве светодиодов нужно брать только светодиоды красного свечения , т.к. они обладают самым малым прямым напряжением при работе. Если, например, взять синие светодиоды, то при севшем до 3х вольт аккумуляторе, они, скорее всего, вообще не загорятся.

Сама микросхема потребляет около 2.5 мА, плюс 5 мА на каждый зажженный светодиод.

Недостатком схемы можно считать невозможность индивидуальной настройки порога зажигания каждого светодиода. Можно задать только начальное и конечное значение, а встроенный в микросхему делитель разобьет этот интервал на равные 9 отрезков. Но, как известно, ближе к концу разряда, напряжение на аккумуляторе начинает очень стремительно падать. Разница между аккумуляторами, разряженными на 10% и 20% может составлять десятые доли вольта, а если сравнить эти же аккумуляторы, только разряженненные на 90% и 100%, то можно увидеть разницу в целый вольт!

Типичный график разряда Li-ion аккумулятора, приведенный ниже, наглядно демонстрирует данное обстоятельство:

Таким образом, использование линейной шкалы для индикации степени разряда аккумулятора представляется не слишком целесообразным. Нужна схема, позволяющая задать точные значения напряжений, при которых будет загораться тот или иной светодиод.

Полный контроль над моментами включения светодиодов дает схема, представленная ниже.

Вариант №11

Данная схема является 4-разрядным индикатором напряжения на аккумуляторе/батарейке. Реализована на четырех ОУ, входящих в состав микросхемы LM339 .

Схема работоспособна вплоть до напряжения 2 Вольта, потребляет меньше миллиампера (не считая светодиода).

Разумеется, для отражения реального значения израсходованной и оставшейся емкости аккумулятора, необходимо при настройке схемы учесть кривую разряда используемого аккумулятора (с учетом тока нагрузки). Это позволит задать точные значения напряжения, соответствующие, например, 5%-25%-50%-100% остаточной емкости.

Вариант №12

Ну и, конечно, широчайший простор открывается при использовании микроконтроллеров со встроенным источником опорного напряжения и имеющих вход АЦП. Тут функционал ограничивается только вашей фантазией и умением программировать.

Как пример приведем простейшую схему на контроллере ATMega328.

Хотя тут, для уменьшения габаритов платы, лучше было бы взять 8-миногую ATTiny13 в корпусе SOP8. Тогда было бы вообще шикарно. Но пусть это будет вашим домашним заданием.

Светодиод взят трехцветный (от светодиодной ленты), но задействованы только красный и зеленый.

Готовую программу (скетч) можно скачать по этой ссылке .

Программа работает следующим образом: каждые 10 секунд опрашивается напряжение питания. Исходя из результатов измерений МК управляет светодиодами с помощью ШИМ, что позволяет получать различные оттенки свечения смешением красного и зеленого цветов.

Свежезаряженный аккумулятор выдает порядка 4.1В — светится зеленый индикатор. Во время зарядки на АКБ присутствует напряжение 4.2В, при этом будет моргать зеленый светодиод. Как только напряжение упадет ниже 3.5В, начнет мигать красный светодиод. Это будет сигналом к тому, что аккумулятор почти сел и его пора заряжать. В остальном диапазоне напряжений индикатор будет менять цвет от зеленого к красному (в зависимости от напряжения).

Вариант №13

Ну и на закуску предлагаю вариант переделки стандартной платы защиты (их еще называют ), превращающий ее в индикатор севшего аккумулятора.

Эти платы (PCB-модули) добываются из старых батарей мобильных телефонов чуть ли не в промышленных масштабах. Просто подбираете на улице выброшенный аккумулятор от мобилы, потрошите его и плата у вас в руках. Все остальное утилизируете как положено.

Внимание!!! Попадаются платы, включающие защиту от переразряда при недопустимо низком напряжении (2.5В и ниже). Поэтому из всех имеющихся у вас плат необходимо отобрать только те экземпляры, которые срабатывают при правильном напряжении (3.0-3.2V).

Чаще всего PCB-плата представляет собой вот такую схемку:

Микросборка 8205 - это два миллиомных полевика, собранных в одном корпусе.

Внеся в схему некоторые изменения (показаны красным цветом), мы получим прекрасный индикатор разряда li-ion аккумулятора, практически не потребляющий ток в выключенном состоянии.

Так как транзистор VT1.2 отвечает за отключение зарядного устройства от банки аккумулятора от при перезаряде, то он в нашей схеме лишний. Поэтому мы полностью исключили этот транзистор из работы, разорвав цепь стока.

Резистор R3 ограничивает ток через светодиод. Его сопротивление необходимо подобрать таким образом, чтобы свечение светодиода было уже заметным, но потребляемый ток еще не был слишком велик.

Кстати, можно сохранить все функции модуля защиты, а индикацию сделать с помощью отдельного транзистор, управляющий светодиодом. То есть индикатор будет загораться одновременно с отключением аккумулятора в момент разряда.

Вместо 2N3906 подойдет любой имеющийся под рукой маломощный p-n-p транзистор. Просто подпаять светодиод напрямую не получится, т.к. выходной ток микросхемы, управляющий ключами, слишком мал и требует усиления.

Пожалуйста, учитывайте тот факт, что схемы индикаторов разряда сами потребляют энергию аккумулятора! Во избежание недопустимого разряда, подключайте схемы индикаторов после выключателя питания или используйте схемы защиты, .

Как, наверное, не сложно догадаться, схемы могут быть использованы и наоборот - в качестве индикатора заряда.


Как же плотно вошли в нашу жизнь Li-ion аккумуляторы. То, что они применяются почти во все микропроцессорной электронике это уже норма. Так и радиолюбители уже давно взяли их себе на вооружение и используют в своих самоделках. Способствую этому значительные плюсы Li-ion аккумуляторов, такие как небольшой размер, большая емкость, большой выбор исполнений различных ёмкостей и форм.

Самый распространенный аккумулятор имеет марку 18650 его напряжение составляет 3,7 В. Для которого я у буду делать индикатор разряда.
Наверное, не стоит рассказывать, как вредна для аккумуляторов кране низкая их разрядка. Причем для аккумуляторов всех разновидностей. Правильная эксплуатация аккумуляторных батарей продлит их жизнь в несколько раз и сэкономит ваши деньги.
Схема индикатора зарядки


Схема довольно универсально и может работать в диапазоне 3-15 вольт. Порог срабатывания можно настроить переменным резистором. Так что устройство можно использовать почти для любых аккумуляторов, будь то кислотные, никелево-кадмиевые (nicd) или литий-ионные (Li-ion).
Схема отслеживает напряжение и как только оно упадет ниже заданного уровня – загорится светодиод, сигнализируя о низкой разрядке батареи.
В схеме используется регулируемый стабилитрон TL431 (ссылка где брал). Вообще этот стабилитрон является очень интересным радиоэлементом, который может существенно облегчить жизнь радиолюбителям, при построении схем, завязанных на стабилизации или пороговом срабатывании. Так что берите его на вооружение, особенно при постройке блоков питания, схем стабилизации токов и т.п.
Транзистор можно заменить любым другим NPN структуры, отечественный аналог КТ315, КТ3102.
R2- регулирует яркость светодиода.
R1 – переменный резистор номиналом от 50 до 150 Ом.
Номинал R3 можно прибавить до 20-30 Ом для экономии энергии, если использован транзистор с высоким коэффициентом передачи.
Если у вас не окажется регулируемого стабилизатора TL431, то можно использовать проверенную советскую схему на двух транзисторах.


Порог срабатывания задается резисторами R2, R3. Вместо них можно запаять один переменный, чтобы дать возможность регулировки и уменьшить количество элементов. Советские транзисторы можно заменить на BC237, BC238, BC317 (КТ3102) и BC556, BC557 (КТ3107).


Схему можно собрать на плате или навесным монтажом. Одеть термоусадочную трубку и обдуть термофеном. Приклеить на двухсторонний скотч к тыльной стороне корпуса. Я лично установил данную плату в шуруповерт и теперь не до вожу его аккумуляторы до критического разряда.
Так же параллельно резистору со светодиодом можно подключить зуммер (пищалку) и тогда вы точно будете знать о критических порогах.

Вам может понравиться:

  • Автономная gsm сигнализация из мобильного телефона…

Интегральный стабилизатор TL431 и его российский аналог К142ЕН19, является регулируемым стабилитроном, и применяется в основном в блоках питания. Но возможности микросхемы этим не ограничиваются.

На рис. 1 показана функциональная схема TL431.

Регулируемый стабилитрон на микросхеме TL431 может найти применение в схемах простых и полезных световых индикаторах и сигнализаторах. С помощью подобных на микросхеме TL431 можно отслеживать много различных параметров, например: уровень воды в емкости, температуру и влажность, освещённость и др.

Схема сигнализатора превышения напряжения на микросхеме TL431 представлена на рис. 2.

Работа сигнализатора превышения напряжения основана на том, что при напряжении на управляющем электроде стабилитрона DA1 (вывод 1) менее 2,5 В стабилитрон закрыт, через него протекает лишь небольшой ток, порядка 0,3 – 0,4 мА. Этого тока достаточно только для очень слабого свечения светодиода HL1. Для устранения этого недостатка, при необходимости, параллельно светодиоду подключить резистор сопротивлением порядка 2-3 кОм.

Напряжение на управляющем электроде, при котором загорается светодиод HL1, задается делителем R1, R2.

При достижении напряжения на выводе 1 микросхемы TL431 более 2,5 В, стабилитрон откроется и засветится светодиод HL1. Необходимое ограничение тока через светодиод HL1 и стабилитрон DA1 обеспечивает резистор R3. Сопротивление резистора R3 рассчитывается на прямой ток через светодиод в пределах 5 – 15 мА.

Для более точной настройки порога срабатывания устройства, вместо резистора R2 установить подстроечный, номиналом в полтора раза больше, расчётного. По окончании настойки, его можно заменить постоянным резистором.

Если требуется контролировать несколько уровней напряжения, например напряжение автомобильного аккумулятора, или других источников, напряжением от 4 до 36 В (36 В – предельное напряжение). В этом случае потребуются два, три или более таких сигнализаторов, каждый из которых настроен на свое напряжение. Таким способом можно целую линейку индикаторов линейной шкалы.

Индикатор пониженного напряжения на микросхеме TL431 показан на рис. 3.

Отличие схемы на рис. 3 от предыдущей на рис. 2, только в способе подключения светодиода HL1. Такое включение называется инверсным, т. к. светодиод зажигается в том случае, когда микросхема закрыта. контролируемое напряжение превышает порог, установленный делителем R1 R2, микросхема открыта, и ток протекает через резистор R3 и выводы 3-2 (катод-анод) микросхемы.

На открытом переходе 3-2 микросхемы присутствует падение напряжения порядка 2 В, которого не достаточно для зажигания светодиода. Чтобы светодиод гарантированно не зажегся, последовательно с ним установлены два диода VD1, VD2. напряжение зажигания светодиодов превышает 2,2 В, то установка этих диодов может не понадобиться, а вместо диодов VD1, VD2 устанавливаются перемычки.

Когда контролируемое напряжение станет меньше установленного делителем R1, R2, микросхема закроется, напряжение на ее выходе будет намного больше 2 В, светодиод HL1 будет светиться.

Объединив схемы на рис. 2 и рис. 3 можно настроить индикацию предельных режимов работы любых напряжением 6, 12 или 24 вольта, или других источников постоянного напряжения.

Если требуется контролировать только изменение напряжения индикатор можно собрать по схеме, представленной на рис. 4.

В этом схеме индикатора применен двухцветный светодиод HL1. контролируемое напряжение, заданное резистором R2 превышает пороговое значение - светится красный светодиод, а напряжение понижено, то горит зеленый.

Когда контролируемое напряжение находится вблизи заданного порога (примерно ±0,05 - 0,1 В) погашены оба индикатора, так как передаточная характеристика стабилитрона имеет определенную крутизну.

На микросхеме TL431 возможно устройства, следящие за изменением какой-либо физической величины.

Для этого резистор R2 можно заменить датчиком, изменяющим сопротивление под действием окружающей среды. Подобное показано на рис. 5.

Условно на одной схеме показано сразу несколько датчиков. подключить фототранзистор, то получится фотореле. Пока освещенность большая, фототранзистор открыт, и его сопротивление невелико. Поэтому напряжение на управляющем выводе DA1 меньше порогового, вследствие этого светодиод не светит. Настройка порога срабатывания устройства производится в этом случае резистором R1, а конденсатор С1, совместно с резистором R3, служит фильтром для защиты от наводок на провода, соединяющие датчик с остальной схемой.

По мере снижения освещенности сопротивление фототранзистора увеличивается, что приводит к возрастанию напряжения на управляющем выводе DA1. Когда это напряжение превысит пороговое (2,5 В), стабилитрон открывается и зажигается светодиод.

Если вместо фототранзистора к входу устройства подключить терморезистор, например серии ММТ, получится индикатор температуры: при понижении температуры светодиод будет загораться.

Эту же схему можно применить в качестве датчика влажности, например, земли. Для этого вместо терморезистора или фототранзистора следует подключить электроды из нержавеющей стали, которые на некотором расстоянии друг от друга воткнуть в землю. При высыхании земли до уровня, определенного при настройке, светодиод зажжется.

Если в схеме на рис. 5 вместо цепочки со светодиодом HL1 и резистором R3 включить реле, то его контактами можно управлять мощными нагрузками, например: лампы уличного освещения, электронасосы и т.д.

На микросхеме TL431 возможно собрать и звуковой индикатор. Схема такого индикатора представлена на рис. 6.

Для контроля уровня жидкости, например, воды в ванне, к схеме подключается датчик из двух нержавеющих пластин, которые расположены на расстоянии нескольких миллиметров друг от друга.

Когда вода достигнет датчика, его сопротивление уменьшается, а микросхема через резисторы R1 R2 входит в линейный режим. Поэтому возникает автогенерация на резонансной частоте пьезокерамического излучателя НА1, на которой и зазвучит звуковой сигнал.

В качестве излучателя можно применить излучатель с тремя выводами типа ЗП-З, или другой из дешёвых телефонных аппаратов китайского производства. Питание устройства производится от напряжения 5 - 12 В. Это позволяет питать его даже от гальванических батарей, что делает возможным использование его в разных местах, в том числе и в ванной.

Примечание:

При замене микросхемы TL431 на К142ЕН19 питающее напряжение не должно быть больше 30 вольт.

Интегральный стабилизатор TL431 применяется в основном в блоках питания. Однако, для него можно найти еще немало применений. Некоторые из таких схем приведены в этой статье.

В этой статье будет рассказано о простых и полезных устройствах, выполненных с применением микросхемы TL431 . Но в данном случае не надо пугаться слова «микросхема», у нее всего три вывода, и внешне она похожа на простой маломощный транзистор в корпусе TO90.

Сначала немного истории

Уж так повелось, что всем электронщикам известны магические числа 431, 494. Что это такое?

Компания TEXAS INSTRUMENTS стояла у самых истоков полупроводниковой эры. Все это время она находится на первых местах в списке мировых лидеров в производстве электронных компонентов, прочно удерживаясь в первой десятке или, как чаще говорят, в мировом рейтинге TOP-10. Первая интегральная микросхема была создана еще в 1958 году сотрудником этой компании Джеком Килби.

Сейчас компания TI выпускает широкий ассортимент микросхем, название которых начинается с префиксов TL и SN. Это соответственно аналоговые и логические (цифровые) микросхемы, которые навсегда вошли в историю компании TI и до сих пор находят широчайшее применение.

В числе самых первых в списке «магических» микросхем следует, наверно, считать . В трехвыводном корпусе этой микросхемы спрятано 10 транзисторов, а функция, выполняемая ею, одинакова с обычным стабилитроном (диод Зенера).

Но за счет подобного усложнения микросхема обладает более высокой термостабильностью и повышенной крутизной характеристики. Главная же ее особенность в том, что при помощи напряжение стабилизации можно изменять в пределах 2,5…30 В. У последних моделей нижний порог составляет 1,25 В.

TL431 была создана сотрудником компании TI Барни Холландом в начале семидесятых годов. Тогда он занимался копированием микросхемы стабилизатора другой компании. У нас бы сказали сдирания, а не копирования. Так вот Барни Холланд позаимствовал из оригинальной микросхемы источник опорного напряжения, а уже на его основе создал отдельную микросхему-стабилизатор. Сначала она называлась TL430, а после некоторых усовершенствований получила название TL431.

С тех пор прошло немало времени, а нет сейчас ни одного компьютерного блока питания, где бы она не нашла применения. Она также находит применение практически во всех маломощных импульсных источниках питания. Один из таких источников теперь есть в каждом доме, - это для сотовых телефонов. Такому долгожительству можно только позавидовать. На рисунке 1 показана функциональная схема TL431.

Рисунок 1. Функциональная схема TL431.

Также Барни Холландом была создана не менее известная и до сих пор востребованная микросхема TL494. Это двухтактный ШИМ - контроллер, на базе которого было создано множество моделей импульсных источников питания. Поэтому число 494 также по праву относится к «магическим».

А теперь перейдем к рассмотрению различных конструкций на базе микросхемы TL431.

Индикаторы и сигнализаторы

Микросхема TL431 может применяться не только по своему прямому назначению как стабилитрон в блоках питания. На ее основе возможно создание различных световых индикаторов и даже звуковых сигнализаторов. С помощью подобных устройств можно отслеживать много различных параметров.

В первую очередь это просто электрическое напряжение. Если же какую либо физическую величину с помощью датчиков представить в виде напряжения, то можно сделать устройство, контролирующее, например, уровень воды в емкости, температуру и влажность, освещенность или давление жидкости или газа.

Работа такого сигнализатора основана на том, что при напряжении на управляющем электроде стабилитрона DA1 (вывод 1) менее 2,5 В стабилитрон закрыт, через него протекает лишь небольшой ток, как правило, не более 0,3…0,4 мА. Но этого тока достаточно для очень слабого свечения светодиода HL1. Чтобы этого явления не наблюдалось, достаточно параллельно светодиоду подключить резистор сопротивлением примерно 2…3 КОм. Схема сигнализатора превышения напряжения показана на рисунке 2.

Рисунок 2. Сигнализатор превышения напряжения.

Если же напряжение на управляющем электроде превысит 2,5 В, стабилитрон откроется и засветится светодиод HL1. необходимое ограничение тока через стабилитрон DA1 и светодиод HL1 обеспечивает резистор R3. Максимальный ток стабилитрона составляет 100 мА, в то время как тот же параметр у светодиода HL1 всего 20 мА. Именно из этого условия и рассчитывается сопротивление резистора R3. более точно это сопротивление можно рассчитать по нижеприведенной формуле.

R3 = (Uпит - Uhl - Uda)/Ihl. Здесь использованы следующие обозначения: Uпит - напряжение питания, Uhl - прямое падение напряжения на светодиоде, Uda напряжение на открытой микросхеме (обычно 2В), Ihl ток светодиода (задается в пределах 5…15 мА). Также не следует забывать о том, что максимальное напряжение для стабилитрона TL431 всего 36 В. Этот параметр также превышать нельзя.

Уровень срабатывания сигнализатора

Напряжение на управляющем электроде, при котором загорается светодиод HL1 (Uз) задается делителем R1, R2. параметры делителя рассчитываются по формуле:

R2 = 2,5*R1/(Uз - 2,5). Для более точной настройки порога срабатывания можно вместо резистора R2 установить подстроечный, номиналом раза в полтора больше, чем получилось по расчету. После того, как настойка произведена, его можно заменить постоянным резистором, сопротивление которого равно сопротивлению введенной части подстроечного.

Иногда требуется контролировать несколько уровней напряжения. В этом случае потребуются три таких сигнализатора, каждый из которых настроен на свое напряжение. Таким образом возможно создание целой линейки индикаторов, линейной шкалы.

Для питания цепи индикации, состоящей из светодиода HL1 и резистора R3, можно применить отдельный источник питания, даже нестабилизированный. В этом случае контролируемое напряжение подается на верхний по схеме вывод резистора R1, который следует отключить от резистора R3. При таком включении контролируемое напряжение может находиться в пределах от трех, до нескольких десятков вольт.

Рисунок 3. Индикатор пониженного напряжения.

Отличие этой схемы от предыдущей в том, что светодиод включен по-другому. Такое включение называется инверсным, поскольку светодиод зажигается в том случае, когда микросхема закрыта. В случае, если контролируемое напряжение превышает порог установленный делителем R1, R2 микросхема открыта, и ток протекает через резистор R3 и выводы 3 - 2 (катод - анод) микросхемы.

На микросхеме в этом случае присутствует падение напряжения 2 В, которого не достаточно для зажигания светодиода. Чтобы светодиод гарантированно не зажегся, последовательно с ним установлены два диода. Некоторые типы светодиодов, например синие, белые и некоторые типы зеленых, зажигаются, когда напряжение на них превышает 2,2 В. В этом случае вместо диодов VD1, VD2 устанавливаются перемычки из проволоки.

Когда контролируемое напряжение станет меньше установленного делителем R1, R2 микросхема закроется, напряжение на ее выходе будет намного больше 2 В, поэтому светодиод HL1 зажжется.

Если требуется контролировать только изменение напряжения индикатор можно собрать по схеме, представленной на рисунке 4.

Рисунок 4. Индикатор изменения напряжения.

В этом индикаторе применен двухцветный светодиод HL1. Если контролируемое напряжение превышает пороговое значение, светится красный светодиод, а если напряжение понижено, то горит зеленый.

В случае, когда напряжение находится вблизи заданного порога (примерно 0,05…0,1 В) погашены оба индикатора, так как передаточная характеристика стабилитрона имеет вполне определенную крутизну.

Если требуется следить за изменением какой-либо физической величины, то резистор R2 можно заменить датчиком, изменяющим сопротивление под действием окружающей среды. Подобное устройство показано на рисунке 5.

Рисунок 5. Схема контроля параметров окружающей среды.

Условно на одной схеме показано сразу несколько датчиков. Если это будет , то получится . Пока освещенность большая, фототранзистор открыт, и его сопротивление невелико. Поэтому напряжение на управляющем выводе DA1 меньше порогового, вследствие этого светодиод не светит.

По мере снижения освещенности сопротивление фототранзистора увеличивается, что приводит к возрастанию напряжения на управляющем выводе DA1. Когда это напряжение превысит пороговое (2,5 В), стабилитрон открывается и зажигается светодиод.

Если вместо фототранзистора к входу устройства подключить терморезистор, например серии ММТ, получится индикатор температуры: при понижении температуры светодиод будет загораться.

Эту же схему можно применить в качестве , например, земли. Для этого вместо терморезистора или фототранзистора следует подключить электроды из нержавеющей стали, которые на некотором расстоянии друг от друга воткнуть в землю. При высыхании земли до уровня, определенного при настройке, светодиод зажжется.

Порог срабатывания устройства во всех случаях устанавливается с помощью переменного резистора R1.

Кроме перечисленных световых индикаторах на микросхеме TL431 возможно собрать и звуковой индикатор. Схема такого индикатора показана на рисунке 6.

Рисунок 6. Звуковой индикатор уровня жидкости.

Для контроля уровня жидкости, например воды в ванне, к схеме подключается датчик из двух нержавеющих пластин, которые расположены на расстоянии нескольких миллиметров друг от друга.

Когда вода достигнет датчика, его сопротивление уменьшается, а микросхема через резисторы R1 R2 входит в линейный режим. Поэтому возникает автогенерация на резонансной частоте пьезокерамического излучателя НА1, на которой и зазвучит звуковой сигнал.

В качестве излучателя можно применить излучатель ЗП-3. питание устройства от напряжения 5…12 В. Это позволяет питать его даже от гальванических батарей, что делает возможным использование его в разных местах, в том числе и в ванной.

Основная область применения микросхемы TL434, конечно же блоки питания. Но, как видим, только этим возможности микросхемы не ограничиваются.

Борис Аладышкин

Как же плотно вошли в нашу жизнь Li-ion аккумуляторы. То, что они применяются почти во все микропроцессорной электронике это уже норма. Так и радиолюбители уже давно взяли их себе на вооружение и используют в своих самоделках. Способствую этому значительные плюсы Li-ion аккумуляторов, такие как небольшой размер, большая емкость, большой выбор исполнений различных ёмкостей и форм.

Самый распространенный аккумулятор имеет марку 18650 его напряжение составляет 3,7 В. Для которого я у буду делать индикатор разряда.
Наверное, не стоит рассказывать, как вредна для аккумуляторов кране низкая их разрядка. Причем для аккумуляторов всех разновидностей. Правильная эксплуатация аккумуляторных батарей продлит их жизнь в несколько раз и сэкономит ваши деньги.

Схема индикатора зарядки


Схема довольно универсально и может работать в диапазоне 3-15 вольт. Порог срабатывания можно настроить переменным резистором. Так что устройство можно использовать почти для любых аккумуляторов, будь то кислотные, никелево-кадмиевые (nicd) или литий-ионные (Li-ion).
Схема отслеживает напряжение и как только оно упадет ниже заданного уровня – загорится светодиод, сигнализируя о низкой разрядке батареи.
В схеме используется регулируемый (ссылка где брал). Вообще этот стабилитрон является очень интересным радиоэлементом, который может существенно облегчить жизнь радиолюбителям, при построении схем, завязанных на стабилизации или пороговом срабатывании. Так что берите его на вооружение, особенно при постройке блоков питания, схем стабилизации токов и т.п.
Транзистор можно заменить любым другим NPN структуры, отечественный аналог КТ315, КТ3102.
R2- регулирует яркость светодиода.
R1 – переменный резистор номиналом от 50 до 150 кОм.
Номинал R3 можно прибавить до 20-30 кОм для экономии энергии, если использован транзистор с высоким коэффициентом передачи.
Если у вас не окажется регулируемого стабилизатора TL431, то можно использовать проверенную советскую схему на двух транзисторах.


Порог срабатывания задается резисторами R2, R3. Вместо них можно запаять один переменный, чтобы дать возможность регулировки и уменьшить количество элементов. Советские транзисторы можно заменить на BC237, BC238, BC317 (КТ3102) и BC556, BC557 (КТ3107).


Схему можно собрать на плате или навесным монтажом. Одеть термоусадочную трубку и обдуть термофеном. Приклеить на двухсторонний скотч к тыльной стороне корпуса. Я лично установил данную плату в шуруповерт и теперь не до вожу его аккумуляторы до критического разряда.
Так же параллельно резистору со светодиодом можно подключить зуммер (пищалку) и тогда вы точно будете знать о критических порогах.
Загрузка...