Автомобильный портал - ZadonskVokzal

Транзистор lm317t сделать простой регулируемый блок питания. Простой регулируемый блок питания на трех микросхемах LM317

Начинающему радиолюбителю просто не обойтись без хотя бы простейшего блока питания. При разработке или настройке того или иного устройства регулируемый блок питания является не заменимым атрибутом. Но если вы начинающий радиолюбитель, и не можете позволить себе дорогой навороченный блок питания, то эта статья поможет вам восполнить вашу нужду

Блок питания на микросхеме LM317T, схема:

В интернете встречается неисчислимое множество схем различных блоков питания. Но даже на первый взгляд легкие схемы, в процессе настройки оказываются не такими уж и легкими. Я рекомендую вам рассмотреть очень простую в настройке, дешевую и надёжную схему блока питания на микросхеме стабилизаторе LM317T, которая регулирует напряжение от 1,3 до 30 В и обеспечивает ток 1А (как правило, этого достаточно для простых радиолюбительских схем) рисунок №1.

Рисунок №1 – Электрическая принципиальная схема регулируемого блока питания.

R1 – около 18 КОм (нужно подбирать под ток светодиода).
R2 — Можно не впаивать — он необходим в том случае если вам нужно получить нестандартные пределы регулировки напряжения. Вы просто подбираете его таким образом что бы сумма R2 + R3 = 5КОм.

R3 — 5,6 Ком.
R4 – 240 Ом.
C1 – 2200 мкФ (электролитический)

C2 — 0,1 мкФ
C3 — 10 мкФ (электролитический)
C4 — 1 мкФ (электролитический)
DA1 – LM317T

Основным элементом в схеме является микросхема LM317T, все её характеристики вы можете без труда посмотреть в мануале на микросхему. Единственное что следует отдельно отметить, это то что её обязательно необходимо цеплять на радиатор (рисунок №2) что бы микросхема не вышла из строя.

Рисунок №2 – Пример радиатора.

Максимальный ток у неё по документации 1.5 А – но я не рекомендую вгонять её в такие придельные режимы работы.
Трансформатор я рекомендую использовать тоже с запасом по току (ток 3А), дабы в случае резкого броска тока он не вышел из строя.
Каждый радиолюбитель делает печатные платы как ему самому угодно – но если вам лень её трассировать – можете использовать мой вариант печатной платы рисунок №3, который доступен по этой ссылке или по этой ссылке . Файлы можно открыть с помощью программы Sprint-Layout 5.


Рисунок №3 — Плата печатная и сборочный чертёж

Прежде чем начать делать мой вариант разводки платы – ещё раз его просмотрите и проанализируйте!!! Плату я трассировал под способ фотолитографии, так что разверните её как необходимо вам. Я старался сделать плату наиболее универсальной для этой схемы и делал её под свои нужды. Если вы не будите впаивать резистор R2 – то вместо него просто нужна перемычка.

P.S.: Я постарался наглядно показать и описать не хитрые советы. Надеюсь, что хоть что-то вам пригодятся. Но это далеко не всё что возможно выдумать, так что дерзайте, и штудируйте сайт


Как можно подключить вольтметр и амперметр к этой схеме

Все сопротивления в схеме лучше всего ставить полуваттные, это почти гарантия стабильной работоспособности схемы, даже в предельных условиях эксплуатации. Резистор R2 можно полностью исключить из схемы, я оставлял под него место на те случаи, когда нужно получит нестандартное напряжение. А ещё, хорошенько покопавшись в интернете, я нашел специальный калькулятор для пересчёта LM317, а именно резисторов в цепи управления регулировки напряжения.

Окно специального калькулятора для расчёта LM317 Управляющий делитель напряжения

Резисторы R3 и R4 – это обыкновенный делитель напряжения, таким образом, мы можем его подобрать под те резисторы, что у нас есть под рукой (в заданных пределах) – это очень удобно и позволяет без особого труда отрегулировать работу LM317T под любое напряжение (верхний придел может варьироваться от 2 до 37 В). К примеру, можно так подобрать резисторы, чтобы ваш блок питания регулировался от 1,2 до 20В – всё зависит от пересчёта делителя R3 и R4. Формулу по которой работает калькулятор, вы можете узнать почитав даташит на ЛМ317Т. В остальном — если всё собрано верно, блок питания сразу же готов к работе.

Питания (БП) упрощается во много раз. Во-первых, есть возможность сделать регулировку. Во-вторых, стабилизация питания производится. Причем по отзывам многих радиолюбителей, эта микросборка в разы превосходит отечественные аналоги. В частности, ее ресурс очень большой, не идет ни в какое сравнение ни с каким другим элементом.

Основа блока питания - трансформатор

Необходимо использование в качестве преобразователя напряжения Его можно взять от практически любой бытовой техники - магнитофонов, телевизоров и пр. Также можно использовать трансформаторы марки ТВК-110, которые устанавливались в блоке кадровой развертки черно-белых телевизоров. Правда, у них выходное напряжение всего 9 В, а ток довольно маленький. И если необходимо запитывать мощного потребителя, его явно не хватит.

Но если требуется сделать мощный БП, то разумнее использовать силовые трансформаторы. Их мощность должна составлять хотя бы 40 Вт. Чтобы на микросборке LM317T блок питания для ЦАП сделать, вам потребуется выходное напряжение 3,5-5 В. Именно такое значение нужно поддерживать в цепи питания микроконтроллера. Не исключено, что потребуется вторичную обмотку слегка изменить. Первичная при этом не перематывается, только проводится ее изоляция (по необходимости).

Выпрямительный каскад

Выпрямительный блок - это сборка из полупроводниковых диодов. Ничего в ней сложного нет, только следует определиться с тем, какой тип выпрямления нужно использовать. Схема выпрямителя может быть:

  • однополупериодная;
  • двухполупериодная;
  • мостовая;
  • с удвоением, утроением, напряжения.

Последнюю разумно применять, если, например, на выходе трансформатора у вас 24 В, а нужно получить 48 или 72. При этом неминуемо уменьшается выходной ток, это следует учитывать. Для простого блока питания больше всего подходит мостовая схема выпрямителя. Используемая микросборка LM317T блок питания мощный не позволит сделать. Причина тому - мощность самой микросхемы составляет всего 2 Вт. Мостовая схема же позволяет избавиться от пульсаций, да и КПД у нее на порядок выше (если сравнивать с однополупериодной схемой). Допускается в выпрямительном каскаде использовать как диодные сборки, так и отдельные элементы.

Корпус для блока питания

В качестве материала для корпуса разумнее использовать пластик. Он удобен в обработке, поддается деформации при прогреве. Другими словами, можно без труда придать заготовкам любую форму. А для высверливания отверстий не потребуется много времени. Но можно немного потрудиться и сделать красивый, надежный корпус из листового алюминия. Конечно, с ним мороки будет побольше, зато внешний вид окажется потрясающим. После изготовления корпуса из листового алюминия, его можно тщательно зачистить, прогрунтовать и нанести по несколько слоев краски и лака.

К тому же вы сразу убьете двух зайцев - получите красивый корпус и обеспечите дополнительное охлаждение микросборке. На LM317T блок питания построен по такому принципу, что стабилизация осуществляется с выделением большого количества тепла. Например, у вас на выходе выпрямителя 12 Вольт, а стабилизация должна выдать 5 В. Вот эта разница, 7 Вольт, уходит на нагрев корпуса микросборки. Следовательно, она нуждается в качественном охлаждении. И алюминиевый корпус будет способствовать этому. Впрочем, можно поступить и более продвинуто - смонтировать на радиаторе термовыключатель, который будет управлять кулером.

Схема стабилизации напряжения

Итак, у вас есть микросборка LM317T, схема блока питания на ней перед глазами, теперь нужно определить назначение ее выводов. Их у нее всего три - вход (2), выход (3) и масса (1). Поверните корпус лицевой стороной к себе, нумерация производится слева направо. Вот и все, теперь осталось осуществить стабилизацию напряжения. А сделать это несложно, если выпрямительный блок и трансформатор уже готовы. Как вы понимаете, минус с выпрямителя подается на первый вывод сборки. С плюса выпрямителя происходит подача напряжения на второй вывод. С третьего снимается стабилизированное напряжение. Причем по входу и выходу необходимо установить электролитические конденсаторы с емкостью 100 мкФ и 1000 мкФ соответственно. Вот и все, только лишь на выходе желательно поставить постоянное сопротивление (порядка 2 кОм), которое позволит электролитам быстрее разряжаться после выключения.

Схема блока питания с возможностью регулировки напряжения

Сделать регулируемый блок питания на LM317T оказывается проще простого, для этого не потребуется особых знаний и умений. Итак, у вас есть уже блок питания со стабилизатором. Теперь можно его слегка модернизировать, чтобы на выходе изменять напряжение, в зависимости от того, какое вам требуется. Для этого достаточно отключить первый вывод микросборки от минуса питания. По выходу включаете последовательно два сопротивления - постоянное (номинал 240 Ом) и переменное (5 кОм). В месте их первый вывод микросборки. Такие несложные манипуляции позволяют сделать регулируемый блок питания. Причем максимальное напряжение, подаваемое на вход LM317T, может составлять 25 Вольт.

Дополнительные возможности

С применением микросборки LM317T схема блока питания становится более функциональной. Конечно, в процессе эксплуатации блока питания, вам потребуется проводить контроль основных параметров. Например, потребляемого тока либо выходного напряжения (особенно это актуально для схемы с регулировкой). Поэтому на лицевой панели нужно смонтировать индикаторы. Кроме того, вам нужно знать, включен ли в сеть блок питания. Обязанность оповещать вас о включении в электросеть лучше возложить на светодиод. Данная конструкция вполне надежная, только питание для него нужно брать с выхода выпрямителя, а не микросборки.

Для контроля тока и напряжения можно использовать стрелочные индикаторы с градуированной шкалой. Но в случае, если хочется сделать блок питания, который не будет уступать лабораторным, можно воспользоваться и ЖК-дисплеями. Правда, для измерения тока и напряжения на LM317T схема блока питания усложняется, так как необходимо использование микроконтроллера и специального драйвера - буферного элемента. Он позволяет подключать к портам ввода-вывода контроллера ЖК-дисплей.

Блок питания – необходимая вещь в арсенале любого радиолюбителя. И я предлагаю собрать очень простую, но в то же время стабильную схему такого устройства. Схема не трудная, а набор деталей для сборки – минимален. А теперь от слов к делу.

Для сборки нужны следующие комплектующие:

НО ! Эти все детали представлены точно по схеме, и выбор комплектующих зависит от характеристики трансформатора, и прочих условий. Ниже представлены компоненты согласно схеме, но их мы будем сами подбирать!

Трансформатор (12-25 В.)
Диодный мост на 2-6 А.
C1 1000 мкФ 50 В.
C2 100 мкФ 50 В.
R1 (номинал подбирается в зависимости от от трансформатора, он служит для запитки светодиода)
R2 200 Ом
R3 (переменный резистор, подбирается тоже, его номинал зависит от R1, но об этом позже)
Микросхема LM317T
А также инструменты, которые понадобятся в ходе работы.

Сразу привожу схему:

Микросхема LM317 является регулятором напряжения. Именно на ней я и буду собирать данное устройство.
И так, приступаем к сборке.

Шаг 1. Для начала нужно определить сопротивление резисторов R1 и R3. Дело в том, какой трансформатор вы выберете. То есть, нужно подобрать правильные номиналы, и в этом нам поможет специальный онлайн-калькулятор. Его можно найти вот по этой ссылке:
Я надеюсь, вы разберетесь. Я рассчитывал резистор R2, взяв R1=180 Ом, а выходное напряжение 30 В. Итого получилось 4140 Ом. То есть мне нужен резистор на 5 кОм.

Шаг 3. Сначала поясню, что куда впаивать. К контактам 1 и 2 – светодиод. 1 – это катод, 2 – анод. А резистор для него (R1) считаем тут:
К контактам 3, 4, 5 – переменный резистор. А 6 и 7 не пригодились. Это было задумано для подключения вольтметра. Если вам это не нужно, то просто отредактируйте скачанную плату. Ну а если понадобится, то установите перемычку между 8 и 9 контактами. Плату я делал на гетинаксе, методом ЛУТ, травил в перекисе водорода (100 мл перекиси + 30 г. Лимонной кислоты + чайная ложка соли).
Теперь о трансформаторе. Я взял силовой трансформатор ТС-150-1. Он обеспечивает напряжение в 25 вольт.

Шаг 4. Теперь нужно определиться с корпусом. Недолго думая, мой выбор пал на корпус от старого компьютерного блока питания. Кстати, в этом корпусе раньше был мой старый бп.

В переднюю панель я взял от бесперебойника, которая очень хорошо подошла по размерам.

Вот так примерно она будет установлена:

Чтобы закрыть дыру в центре, я вклеил небольшой кусок ДВП, и просверлил все нужные отверстия. Ну и установил разъемы Banana.

Кнопка включения питания осталась сзади. Её на фото пока нет. Трансформатор я закрепил его «родными» гайками к задней решетки вентилятора. Он точно подошел по размерам.

А на место где будет плата, тоже приклеил кусок ДВП, дабы избежать замыкания.

Шаг 5 . Теперь нужно установить плату и радиатор, припаять все необходимые провода. И не забываем про предохранитель. Его я прикрепил сверху на трансформатор. На фото это всё выглядит, как-то страшно и не красиво, но наделе это совсем не так.

Стабилизатор тока для светодиодов применяется во многих светильниках. Как и всем диодам, LED присуще нелинейная вольт-амперная зависимость. Что это значит? При повышении напряжения, сила тока медленно начинает набирать мощь. И только при достижении порогового значения, яркость светодиода становится насыщенной. Однако если ток не перестанет расти, то лампа может сгореть.

Правильная работа LED может быть обеспечена только благодаря стабилизатору. Эта защита необходима еще и по причине разброса пороговых значений напряжения светодиода. При подключении по параллельной схеме лампочки могут просто на просто сгореть, так как им приходится пропускать недопустимую для них величину тока.

Виды стабилизирующих устройств

По способу ограничения силы тока выделяются устройства линейного и импульсного типа.

Так как напряжение на светодиоде – неизменная величина, то стабилизаторы тока часто считают стабилизаторами мощности LED. Фактически последняя прямо пропорциональна изменению напряжения, что характерно для линейной зависимости.

Линейный стабилизатор нагревается тем больше, чем больше прилагается к нему напряжения. Это его главный недочёт. Преимущества данной конструкции обусловлены:

  • отсутствием электромагнитных помех;
  • простотой;
  • низкой стоимостью.

Более экономичными устройствами являются стабилизаторы на основе импульсного преобразователя. В этом случае мощность прокачивается порционно – по мере необходимости для потребителя.

Схемы линейных устройств

Самая простейшая схема стабилизатора – это схема, построенная на основе LM317 для светодиода. Последний являются аналогом стабилитрона с определенным рабочим током, который он может пропускать. Учитывая малую силу тока можно собрать простой аппарат самостоятельно. Наиболее простой драйвер светодиодных ламп и лент собирают именно таким способом.

Микросхема LM317 уже не одно десятилетие является хитом среди начинающих радиолюбителей благодаря своей простоте и надежности. На её основе можно собрать регулируемый блок драйвер и другие БП. Для этого потребуется несколько внешних радиодеталей, модуль работает сразу, настройки не требуется.

Интегральный стабилизатор LM317 как никакой другой подходит для создания несложных регулируемых блоков питания, для электронных устройств с разными характеристиками, как с регулируемым выходным напряжением, так и с заданными параметрами нагрузки.

Основное назначение это стабилизация заданных параметров. Регулировка происходит линейным способом, в отличие от импульсных преобразователей.

Выпускаются LM317 в монолитных корпусах, исполненных в нескольких вариациях. Самая распространённая модель TO-220 с маркировкой LM317Т.

Каждый вывод микросхемы имеет свое предназначение:

  • ADJUST. Ввод для регулирования выходного напряжения.
  • OUTPUT. Ввод для формирования выходного напряжения.
  • INPUT. Ввод для подачи питающего напряжения.

Технические показатели стабилизатора:

  • Напряжение на выходе в пределах 1,2–37 В.
  • Защита от перегрузки и КЗ.
  • Погрешность выходного напряжения 0,1%.
  • Схема включения с регулируемым выходным напряжением.

Мощность рассеяния и входное напряжение устройства

Максимальная «планка» входного напряжения должна быть не более заданной, а минимальная – выше желаемой выходной на 2 В.

Микросхема рассчитана на стабильную работу при максимальном токе до 1,5 А. Это значение будет ниже, если не применять качественный теплоотвод. Максимально допустимое рассеивание мощности без последнего равно примерно 1,5 Вт при температуре окружающей среды не более 30 0 С.

При установке микросхемы требуется изоляция корпуса от радиатора, к примеру, с помощью слюдяной прокладки. Также эффективный отвод тепла достигается путём применения теплопроводной пасты.

Краткое описание

Коротко описать достоинства радиоэлектронного модуля LM317, применяемого в стабилизаторах тока, можно так:

  • яркость светового потока обеспечивается диапазоном выходного напряжения 1, – 37 В;
  • выходные показатели модуля не зависят от частоты вращения вала электродвигателя;
  • поддерживание выходного тока до 1,5 А позволяет подключать несколько электроприёмников;
  • погрешность колебаний выходных параметров равна 0,1% от номинального значения, что является гарантией высокой стабильности;
  • имеется функция защиты по ограничению тока и каскадного отключения при перегреве;
  • корпус микросхемы заменяет землю, поэтому при внешнем креплении уменьшается количество монтажных кабелей.

Схемы включения

Безусловно, наипростейшим способом токового ограничения для светодиодных ламп станет последовательное включение добавочного резистора. Но данное средство подходит лишь только для маломощных LED.

Простейший стабилизированный блок питания

Чтобы сделать стабилизатор тока потребуется:

  • микросхемка LM317;
  • резистор;
  • монтажные средства.

Собираем модель по нижеприведенной схеме:

Модуль можно применять в схемах разных зарядных устройств либо регулируемых ИБ.

Блок питания на интегральном стабилизаторе

Этот вариант более практичный. LM317 ограничивает потребляемый ток, который задается резистором R.

Помните, что максимально допустимое значение тока, которое нужно для управления LM317, составляет 1,5 А с хорошим радиатором.

Схема стабилизатора с регулируемым блоком питания

Ниже изображена схема с регулируемым выходным напряжением 1.2–30 В/1,5 А.

Переменный ток преобразуется в постоянный с помощью моста-выпрямителя (BR1). Конденсатор С1 фильтрует пульсирующий ток, С3 улучшает переходную характеристику. Это означает, что стабилизатор напряжения может отлично работать при постоянном токе на низких частотах. Выходное напряжение регулируется ползунком Р1 от 1.2 вольта до 30 В. Выходной ток составляет около 1,5 А.

Подбор резисторов по номиналу для стабилизатора должен осуществляться по точному расчету с допустимым отклонением (небольшим). Однако разрешается произвольное размещение резисторов на монтажном плате, но желательно для лучшей стабильности размещать их подальше от радиатора LM317.

Область применения

Микросхема LM317 является отличным вариантом для использования в режиме стабилизации основных технических показателей. Она отличается простотой в исполнении, недорогой стоимостью и отличными эксплуатационными характеристиками. Единственный недостаток – пороговое значение напряжения составляет лишь 3 В. Корпус в стиле ТО220 – это одна из самых доступных моделей, которая позволяет рассеивать тепло довольно хорошо.

Микросхема применима в устройствах:

  • стабилизатор тока для LED (в том числе для LED-лент);
  • Регулируемый .

Стабилизирующая схема, построенная на основе LM317 простая, дешёвая, и в то же время надежная.

Здравствуйте, сегодня я расскажу, как сделать регулируемый блок питания на базе микросхемы lm317. Схема сможет выдавать до 12 вольт и 5 ампер.

Схема блока питания

Для сборки нам понадобятся

  • Стабилизатор напряжения LM317 (3 шт.)
  • Резистор 100 Ом.
  • Потенциометр 1 кОм.
  • Конденсатор электролитический 10 мкФ.
  • Конденсатор керамический 100 нФ (2 шт.).
  • Конденсатор электролитический 2200 мкФ.
  • Диод 1N400X (1N4001, 1N4002…).
  • Радиатор для микросхем.

Сборка схемы

Собирать схему будем навесным монтажом, так как деталей немного. Сначала прикрепляем микросхемы к радиатору, так и собирать будет удобнее. Кстати, необязательно использовать три LM. Они все соединены параллельно, поэтому можно обойтись двумя или одной. Теперь все крайние левые ножки припаиваем к ножке потенциометра. К этой ножке припаиваем плюс конденсатора, минус припаиваем к другому выходу. Чтобы конденсатор не мешал, я перепаял его снизу потенциометра.


К ножке потенциометра, к которой припаяли левые ножки микросхем, также припаиваем резистор на 100 Ом. К другому концу потенциометра припаиваем средние ножки микросхем (у меня это лиловые провода).


К этой ножке резистора припаиваем диод. К другой ножке диода припаиваем все правые ножки микросхемы (у меня это белые провода). Плюс припаиваем один провод, это будет плюс входа.


Ко второму выходу потенциометра припаиваем два провода (у меня они черные). Это будет минус входа и выхода. Также припаиваем провод (у меня он красный) к резистору там, где ранее припаивали диод. Это будет плюс выхода.


Теперь осталось припаять к плюсу и минусу входа, плюсу и минусу выхода по конденсатору на 100 нФ (100 нФ = 0,1 мкФ, маркировка 104).


На вход следом припаиваем конденсатор на 2200 мкФ, плюсовая нога припаивается к плюсу входа.


На этом изготовление схемы готово.


Так как схема выдает 4,5 Ампер и до 12 Вольт, входное напряжение должно быть как минимум таким же. Потенциометром уже будем регулировать выходное напряжение. Для удобства советую поставить хотя бы вольтметр. Делать полный корпус я не буду, все, что я сделал, это прикрепил радиатор к отрезку ДВП и прикрутил потенциометр. Провода выхода я также вывел и прикрутил к ним крокодильчиков. Это вполне удобно. Далее я это прикрепил все это к столу.


Загрузка...