Автомобильный портал - ZadonskVokzal

Электронное зажигание сверчкова схема. Блок электронного зажигания повышенной надежности

Представленная ниже, схема зажигания автомобиля предназначена для опытных радиолюбителей.

Тем, кто ранее собирал простые схемы блоков зажигания и желающим собрать устройство, из которого, максимально «выжато» все или может почти всё!

За истекшие годы стабилизированный блок зажигания повторили очень многие авто- и радиолюбители, и несмотря на выявленные недостатки можно считать что он проверку временем выдержал. Существенно также, что в литературе пока не появились публикации сходных по простоте конструкций с аналогичными параметрами.
Эти обстоятельства и побудили автора сделать ещё одну попытку основательно улучшить показатели блока, сохранив его простоту.

Основное отличие усовершенствованного блока зажигания от — заметное улучшение его энергетических характеристик. Если у исходного блока максимальная длительность искры не превышала 1,2 мс, причем она могла быть получена лишь на самых низких значениях частоты искрообразования, то у нового длительность искры постоянна во всей рабочей полосе 5…200 Гц и равна 1,2… 1,4 мс. Это значит, что на средних и максимальных оборотах двигателя — а это наиболее часто используемые режимы, длительность искры практически соответствует установившимся и настоящее время требованиям.

Ощутимо изменилась и мощность, подводимая к катушке зажигания. На частоте 20 Гц при катушке Б-115 она достигает 50…52 мДж, а на 200 Гц — около 16 мДж. Расширены также пределы питающего напряжения, в которых блок работоспособен. Уверенное искрообразование при пуске двигателя обеспечивается при бортовом напряжении 3,5 В, но работоспособность блока сохраняется и при 2,5 В. На максимальной частоте искрообразование не нарушается, если питающее напряжение достигает 6 В, а длительность искры — не ниже 0,5 мс.

Указанные результаты получены главным образом за счет изменения режима работы преобразователя, особенно условий его возбуждения. Эти показатели, которые, по мнению автора, находятся на практическом пределе возможностей при использовании всего одного транзистора, обеспечены также применением ферритового магнитопровода в трансформаторе преобразователя.

Как видно из принципиальной схемы блока, показанной на рисунке выше, основные ее изменения относятся к преобразователю, т.е. генератору зарядных импульсов, питающих накопитель-конденсатор С2. Упрощена цепь запуска преобразователя, выполненного, как и прежде, по схеме однотактного стабилизированного блокинг-генератора. Функции пускового и разрядного диодов(соответственно VD3 и VD9 по прежней схеме) выполняет теперь один стабилитрон VD1. Такое решение обеспечивает более надежный запуск генератора после каждого цикла искрообразования путем значительного увеличения начального смещения на эмиттерном переходе транзистора VT1. Это не снизило тем не менее общей надежности блока, поскольку режим транзистора ни по одному из параметров не превысил допустимых значений.

Изменена и цепь зарядки конденсатора задержки С1. Теперь он после зарядки накопительного конденсатора заряжается через резистор R1 и стабилитроны VD1 и VD3. Таким образом, в стабилизации участвуют два стабилитрона, суммарным напряжением которых при их открывании и определяется уровень напряжения на накопительном конденсаторе С2. Некоторое увеличение напряжения на этом конденсаторе скомпенсировано соответствующим увеличением числа витков базовой обмотки и трансформатора. Средний уровень напряжения на накопительном конденсаторе уменьшен до 345…365 В, что повышает общую надежность блока и обеспечивает вместе с тем требуемую мощность искры.

В разрядной цепи конденсатора С1 использован стабистор VD2, позволяющий получить такую же степень перекомпенсации при уменьшении бортового напряжения, как три-четыре обычных последовательных диода. При разрядке этого конденсатора стабилитрон VD1 открыт в прямом направлении, (подобно диоду VD9 исходного блока). Конденсатор С3 обеспечивает увеличение длительности и мощности импульса, открывающего тринистор VS1. Это особенно необходимо при большой частоте искрообразования, когда средний уровень напряжения на конденсаторе С2 существенно снижается.

В блоках электронного зажигания с многократной разрядкой накопительного конденсатора на катушку зажигания длительность искры и в определенной степени ее мощность определяет качество тринистора, поскольку все периоды колебаний, кроме первого, создаются и поддерживаются только энергией накопителя. Чем меньше затраты энергии на каждое включение тринистора, тем большее число запусков будет возможно и тем большее количество энергий (и за большее время) будет передано катушке зажигания. Крайне желательно поэтому подобрать тринистор с минимальным открывающим током.
Хорошим можно считать тринистор, если блок обеспечивает начало искрообразования (с частотой 1…2 Гц) при питании блока напряжением 3 В. Удовлетворительному качеству соответствует работа при напряжении 4…5 В. С хорошим тринистором длительность искры равна 1,3…1,5 мс, при плохом — уменьшается до 1… 1,2 мс.


При этом, как это ни покажется странным, мощность искры в обоих случаях будет примерно одинаковой по причине ограниченной мощности преобразователя. В случае большей длительности конденсатор-накопитель разряжается практически полностью, начальный (он же средний) уровень напряжения на конденсаторе, задаваемый преобразователем, несколько ниже, чем в случае с меньшей длительностью. При меньшей же длительности начальный уровень более высок, но высок и остаточный уровень напряжения на конденсаторе из-за его неполной разрядки.

Таким образом, разность между начальным и конечным уровнями напряжения на накопителе в обоих случаях практически одинакова, а от нее и зависит количество вводимой в катушку зажигания энергии . И все-таки при большей длительности искры достгается лучшее дожигание горючей смеси в цилиндрах двигателя, т.е. повышается его КПД.

При нормальной работе блока формированию каждой искры соответствуют 4,5 периода колебаний в катушке зажигания. Это означает, что искра представляет собой девять знакопеременных разрядов в свече зажигания, непрерывно следующих один за другим.

Нельзя поэтому согласиться с, мнением (изложенным в) о том, что вклад третьего и тем более четвертого периодов колебаний не удается обнаружить ни при каких условиях. На самом деле каждый период вносит свой совершенно конкретный и ощутимый вклад в общую энергию искры, что подтверждают и другие публикации, например . Однако, если источник бортового напряжения включен последовательно с элементами контура (т.е. последовательно с катушкой зажигания и накопителем), сильное затухание, вносимое именно источником, а не другими элементами, действительно, не позволяет обнаружить упомянутый выше вклад. Такое включение как раз и использовано в .

В описываемом блоке источник бортового напряжения в колебательном процессе участия не принимает и упомянутых потерь, естественно, не вносит.

Один из наиболее ответственных узлов блока — трансформатор Т1. Его магнитопровод Ш15х12 изготовлен из оксифера НМ2000. Обмотка I содержит 52 витка провода ПЭВ-2 0,8; II — 90 витков провода ПЭВ-2 0,25; III — 450 витков провода ПЭВ-2 0.25.

Зазор между Ш-образными частями магнитопровода должен быть выдержан с максимально возможной точностью. Для этого при сборке между его крайними стержнями помещают, без клея по гетинаксовой (или текстолитовой) прокладке толщиной 1,2+-0,05 мм, после чего детали магнитопровода стягивают прочными нитками.
Снаружи трансформатор необходимо покрыть несколькими слоями эпоксидной смолы, нитроклея или нитроэмали.
Катушку можно выполнить на прямоугольной шпуле без щек. Первой наматывают обмотку III, в которой каждый слой отделяют от следующего тонкой изоляционной прокладкой, а завершают трехслойной прокладкой. Далее наматывают обмотку II. Обмотку I отделяют от предыдущей двумя слоями изоляции. Крайние витки каждого слоя при намотке на шпуле следует фиксировать любым нитроклеем.

Гибкие выводы катушки лучше всего оформить по окончании всей намотки. Выводить концы обмотки I и II следует в сторону диаметрально противоположную концам обмотки III, но все выводы должны быть на одном из торцов катушки. В таком же порядке располагают и гибкие выводы, которые закрепляют нитками и клеем на прокладке из электрокартона (прессшпана). Перед заливкой выводы маркируют.

Кроме КУ202Н, в блоке можно применить тринистор КУ221 с буквенными индексами А-Г. При выборе тринистора следует принять во внимание, что, как показывает опыт, КУ202Н по сравнению с КУ221 имеют в большинстве случаев меньший ток открывания, но более критичны к параметрам импульса запуска (длительности и частоте). Поэтому для случая использования тринистора из серии КУ221 номиналы элементов цепи удлинения искры необходимо скорректировать — конденсатор С3 должен иметь емкость 0,25 мкФ, а резистор R4 — сопротивление 620 Ом.

Транзистор КТ837 может быть с любыми буквенными индексами, кроме Ж, И, К, Т, У, Ф. Желательно, чтобы статический коэффициент передачи тока не был менее 40. Применение транзистора другого типа нежелательно.

Теплоотвод транзистора должен иметь полезную площадь не менее 250 кв.см. В роли теплоотвода удобно использовать металлический кожух блока или его основание, которые следует дополнить охлаждающими ребрами. Кожух должен обеспечивать и брызгозащищенность блока.

Стабилитрон VD3 также необходимо устанавливать на теплоотвод. В блоке он представляет собой две полосы размерами 60x25x2 мм, согнутые П-образно и вложенные одна в другую. Стабилитрон Д817Б можно заменить последовательной цепью из двух стабилитронов Д816В; при бортовом напряжении 14 В и частоте искрообразования 20 Гц эта пара должна обеспечивать на накопители напряжение 350…360В. Каждый из них устанавливают на небольшой теплоотвод. Стабилитроны подбирают только после выбора и установки тринистора.

Стабилитрон VD1 подборки не требует, но он обязательно должен быть в металлическом корпусе. Для увеличения общей надежности блока целесообразно этот стабилитрон снабдить небольшим теплоотводом в виде обжимки из полоски тонкого дюралюминия.

Стабистор КС119А (VD2) можно заменить тремя диодами Д223А (или другими кремниевыми диодами с импульсным прямым током не менее 0,5 А), включенными последовательно.

Большинство деталей блока смонтированы на печатной плате из фольгированного стеклотекстолита толщиной 1,5 мм. Чертеж платы показан на рис.2. Плата разработана с учетом возможности монтажа деталей при различных вариантах замены.

Для блока, предназначенного работать в местностях с суровым зимним климатом, оксидный конденсатор С1 желательно использовать танталовый с рабочим напряжением не ниже 10 В. Его устанавливают вместо большой перемычки на плате, при этом точки подключения алюминиевого оксидного конденсатора (он-то и показан на плате), пригодного для работы в подавляющем большинстве климатических зон, следует замкнуть перемычкой соответствующей длины. Конденсатор С2-МБГО, МБГЧ или К73-17 на напряжение 400…600 В.

В случае выбора для блока тринистора из серии КУ221 нижнюю по рис.2 часть платы необходимо скорректировать так, как это показано на рис.3. При монтаже тринистора необходимо один из винтов его крепления изолировать от печатной дорожки общего провода.

Проверку работоспособности и тем более регулировку следует проводить именно с такой катушкой зажигания, с которой блок будет работать в дальнейшем. Следует иметь в виду, что включение блока без катушки зажигания, нагруженной запальной свечой, совершенно недопустимо. Для проверки вполне достаточно измерять пиковым вольтметром напряжение на накопительном конденсаторе С2. Таким вольтметром может служить авометр, имеющий предел постоянного напряжения 500 В. Авометр подключают к конденсатору С2 через диод Д226Б (или подобный), а зажимы авометра шунтируют конденсатором емкостью 0,1…0,5мкф, на напряжение 400…600 В.

При номинальном напряжении питания (14 В) и частоте искрообразования 20 Гц напряжение на накопителе должно находиться в пределах 345…365 В. Если напряжение меньше, то прежде всего подбирают тринистор с учетом сказанного выше. Если после подборки будет обеспечено искрообразоеание при понижении напряжения питания до 3 В, но на конденсаторе С2 при номинальном напряжении питания будет повышенное напряжение, следует подобрать стабилитрон VD3 с несколько пониженным напряжением стабилизации.

Далее проверяют блок на высшей частоте искрообраэования (200 Гц), поддерживая номинальное бортовое напряжение. Напряжение на конденсаторе С2 должно находиться в пределах 185…200 В, а потребляемый блоком ток после непрерывной работы в течение 15…20 мин не должен превышать 2,2 А. Если транзистор за это время нагреется выше 60°С при комнатной окружающей температуре, тёплоотводящую поверхность следует несколько увеличить. Конденсатор С3 и резистор R4 подборки, как правило, не требуют. Однако для отдельных экземпляров тринисторов (как того, так и другого типа) может потребоваться корректировка номиналов, если на частоте 200 Гц будет обнаружена неустойчивость в искрообраэовании. Она проявляется обычно в виде кратковременного сбоя в показаниях вольтметра, подключенного к накопителю, и хорошо заметна на слух.

В этом случае следует увеличить емкость конденсатора С3 на 0,1…0,2 мкФ, а если это не поможет, вернуться к прежнему значению и увеличить сопротивление резистора R4 на 100…200 Ом. Одна из этих мер, а иногда и обе вместе, обычно устраняют неустойчивость запуска. Заметим, что увеличение сопротивления уменьшает, а увеличение емкости увеличивает длительность искры.

Если есть возможность воспользоваться осциллографом, то полезно убедиться в нормальном течении колебательного процесса в катушке зажигания и фактической его длительности. До полного затухания должны быть хорошо, различимы 9-11 полуволн, суммарная длительность которых должна быть равна 1,3…1,5 мс на любой частоте искрообразования. Вход X осциллографа следует подключать к общей точке обмоток катушки зажигания.

Типичный вид осциллограммы показан на рис.4. Всплески посредине минусовых полуволн соответствуют единичным импульсам блокинг-генератора при изменении направления тока в катушке зажигания.

Целесообразно проверить также зависимость напряжения на накопительном конденсаторе от бортового напряжения.

Ее вид не должен заметно отличаться от показанного на рис.5.

Изготовленный блок рекомендуется устанавливать в моторном отсеке в передней, более прохладной его части. Искрогасящий конденсатор прерывателя следует отключить и соединить его вывод с соответствующим контактом розетки разъема Х1. Переход на классическое зажигание выполняют, как и в прежней конструкции, установкой вставки-замыкателя Х1.3.

В заключение отметим, что попытки получить столь же «длинную» искру с трансформатором на стальном магнитопроводе, даже из стали самого высокого качества, не приведут к успеху. Наибольшая длительность, которая может быть достигнута, — 0,8…0,85 мс. Тем не менее блок почти без изменений (сопротивление резистора R1 следует уменьшить до 6…8 Ом) работоспособен и с трансформатором на стальном магнитопроводе с указанными намоточными характеристиками, и эксплуатационный качества блока выше, чем у его прототипа .

Литература:
1. Г. Карасев. Стабилизированный блок электронного зажигания. — Радио, 1988, № 9, с. 17; 1989, №5, с.91
2. П.Гацанюк. Усовершенствованная электронная система зажигания. В сб.: «В помощь радиолюбителю», вып: 101, с. 52, — М.: ДОСААФ.
3. А. Синельников. Электроника в автомобиле. — М.:, Радио и связь, 1985, с.46.
4. Ю. Архипов. Полуавтоматический блок зажигания. — Радио, 1990, № 1, с. 31-34; №2, с. 39-42.

Автомобиль – система невероятно сложная, включает в себя множество компонент и устройств, которые постоянно взаимодействуют между собой. Без системы зажигания Ваш автомобиль с места не сдвинется. Стоит уделить особое внимание этому аспекту, а, в частности, обсудить вопросы, связанные с электронным зажиганием.

Что такое электронное зажигание?

Электронная система зажигания – это такая система зажигания, которая использует электронные устройства для создания и передачи тока высокого напряжения на цилиндры двигателя. Также эту систему иногда называют микропроцессорной системой зажигания.

Нужно упомянуть о том, что и бесконтактная, и контактно-транзисторная системы в своей конструкции используют электронные механизмы, но названия данных систем уже давно устоялись. Электронное зажигание лишено любых механических контактов, поэтому можно сказать, что электронное зажигание является бесконтактным. Современные модели автомобилей оснащены электронной системой зажигания, которая является компонентой системы управления движком. С помощью этой системы контролируется объединенная система впрыска и зажигания, а иногда и другие системы (впускная, выпускная, охладительная).

Все системы электронного зажигания можно разбить на две категории: системы с прямым зажиганием и с распределителем. Распределительная система электронного зажигания во время работы использует распределитель на механике, который отвечает за передачу сильного тока на свечу. Системы прямого зажигания передают ток прямо на катушки зажигания.

Конструкцию системы электрозажигания формируют достаточно традиционные компоненты – источник питания, катушка зажигания, свечи, выключатель, высоковольтные провода. Также в систему входят воспламенитель (устройство-исполнитель), и входные датчики. Эти самые датчики фиксируют показатели работы двигателя в текущий момент и преобразуют эти показатели в электрические импульсы. В своей работе электронное зажигание использует показания датчиков, которые присутствуют в системе управления двигателем. К этим устройствам относятся датчики:

- частоты вращения коленвала двигателя;

Массового расхода воздуха;

Положения распредвала;

Детонации;

Температуры охлаждающей жидкости, воздуха;

Кислородный датчик и другие.

С помощью блока управления двигателя происходит обработка сигналов сходных датчиков и формирование управляющего воздействия на воспламенитель. Сам воспламенитель – это электронная плата, которая обеспечивает выключение и включение зажигания. В основе воспламенителя лежит транзистор. Если транзистор открыт, то ток идет на первичную обмотку катушки зажигания, а если он закрыт, то ток идет на вторичную обмотку. Катушка в системе зажигания может быть одна общая, индивидуальные или же сдвоенные. При использовании индивидуальных катушек зажигания отпадает необходимость использовать провода высокого напряжения, так как такая катушка будет крепиться прямо на свечу. В распределительных системах зажигания применяются общие катушки зажигания.

Для систем прямого зажигания характерно использование сдвоенных катушек. Если двигатель имеет 4 цилиндра, то одна из катушек приходится на первый и четвертый цилиндры, а другая – на второй и третий. С помощью катушек происходит генерация тока высокого напряжения, причем для тока есть два вывода, посему искра проходит сразу в оба цилиндра. В одном из них воспламеняется топливно-воздушная смесь, а в другом искра идет вхолостую.

Электронная система зажигания работает по следующему принципу. На электронный блок управления приходят сигналы датчиков. Основываясь на этих показаниях, вычисляются наиболее оптимальные параметры для работы всей системы. Далее управленческий импульс идет к воспламенителю, который и отвечает за подачу напряжения на зажигательную катушку. После этого по первичной обмотке катушки начинает «бежать» ток.

Когда подача напряжения прерывается, тогда ток высокого напряжения протекает по вторичной обмотке катушки зажигания. Этот самый ток передается свече зажигания или прямо с катушки, или через высоковольтные провода. После того, как на свечу поступает ток, образуется искра, благодаря которой детонирует топливно-воздушная смесь. Когда меняется скорость вращения , то датчик частоты его вращения вместе с датчиком положения распредвала передают сигнал на ЭБУ, который производит сигнал для изменения угла опережения зажигания. Когда двигатель находится под воздействием возросшей нагрузки, то угол опережения зажигания регулируется датчиком массового расхода воздуха. Остальные датчики предоставляют дополнительную информацию.

Если Вы решите заменить заводское зажигание на электронное, то больше не будете сталкиваться с большинством проблем с зажиганием, а также получите ряд преимуществ, например, динамичность Вашей машины увеличится, а в мороз двигатель будет запускать легче.

Если сравнивать заводское зажигание с электронным, то последняя система использует транзистор выхода для замыкания и размыкания цепь. Подобное решение приводит к тому, что напряжение на свечах автомобиля возрастает, а от искры получается больше энергии. Также такое конструкторское решение не позволяет напряжению на электродах свечей падать даже при низких температурах, посему двигатель легче запускается даже при неблагополучных условиях. Хотя у катушек и заводского, и электронного зажигания набор проводов одинаковый, но обязательно нужно проверять правильно ли они подключены, так как в системе электрозажигания катушка может развернуться на кронштейне на все 180 градусов.

Установка электронного зажигания

Имеет смысл сказать несколько слов о том, что же входит в комплект элементов системы электронного зажигания. Всю систему формируют следующие 5 элементов:

1) Бесконтактный трамблер. Выполняет роль распределяющего датчика зажигания. На машинах с разными видами двигателей будут установлены разные трамблеры.

2) Коммутатор. Коммутатор отвечает за прерывание электрического тока, идущего по катушке зажигания. Это реакция на сигналы, которые исходят из распределительного датчика. Каждый коммутатор «умеет» отключать электрический ток, причем даже тогда, когда включено зажигание, или же работает двигатель.

3) Катушка зажигания. Этот элемент необходим для преобразования низковольтного тока в высоковольтный. Подобная процедура крайне важна по причине необходимости пробивать воздушную прослойку, образовывающуюся между контактами электродов свечей.

4) Комплект проводов

5) Свечи для передачи искры в цилиндры.

Для того, чтобы установить электронное зажигание, Вам понадобятся:

1) Набор гаечных ключей;

2) Крестовидная отвертка;

3) Саморезы;

4) Электронная дрель и сверло, диаметр которого аналогичен саморезу.

Начинать установку электрического зажигания можно только по окончанию полноценной регулировки трамблера.

Последовательность действий следующая:

1) С трамблера нужно снять крышку, к которой идут высоковольтные электрические провода;

3) В стартерной системе происходят короткие включения, за счет чего нужно выставить линию резистора так, чтобы она образовывала с двигателем прямой угол. После выставления направления резистора запрещено проворачивать коленвал вплоть до окончания работ;

4) Справа на корпусе трамблера имеются 5 меток, которые нужны для того, чтобы регулировка зажигания была сделана правильно. Дабы правильно установить новый трамблер, необходимо отметить на моторе то место, которое расположено напротив средней отметки старого трамблера;

6) После демонтажа старого трамблера можно будет ставить новый. Это делается посредством помещения детали в мотор на основе той метки, которая была поставлена ранее;

7) После установки и регулировки нового трамблера, его нужно будет зафиксировать гайкой;

8) После закрепления трамблера можно будет вернуть на место крышку, а после этого можно подключать к крышке электропровода.

9) После манипуляций с трамблером, необходимо заменить катушку, так как катушки контактного и электронного зажигания различны между собой;

10) После переустановки катушки нужно подвести к зажиганию провода. Важно не забыть о трехштырьковом высоковольтном проводе, соединяющем катушку с трамблером;

11) После окончания работ с катушкой можно переходить к установке коммутатора. Наиболее простое решение – это размещение коммутатора в свободной области между омывателем и левой фарой. Для того, чтобы закрепить элемент, необходимо будет сделать под размер его «ушей» отверстия, а сам коммутатор крепиться с помощью саморезов. После монтажа нужно будет «бросить» провод от коммутатора к системе зажигания;

12) После окончания всех работ нужно проверить правильность подключения проводов. Ориентиром для этого будут сервисная книжка Вашей машины, а также схема, имеющая в комплекте элементов электронного зажигания.

Неисправности электронного зажигания

Во время использования автомобиля любой его компонент может выйти из строя, в том числе это касается системы зажигания. Были выделены дефекты, которые характерны для любой системы зажигания:

- выход из стоя свечей системы зажигания;

Поломка катушки;

Проблема с высоковольтными и низковольтными проводами (наличие обрыва, окисленные контакты, недостаточно плотное соединение и т.д.).

В системе электрозажигания также могут возникнуть неполадки, связанные с неисправностями ЭБУ и входными датчиками.

Система зажигания ломается по следующим причинам:

1) Были нарушены правила эксплуатации автомобиля (в машину заливался некачественный бензин, авто вовремя не обслуживалось, а если диагностика и проводилась, то она могла быть выполнена неквалифицированным мастером);

2) В машину ставились некачественные конструктивные элементы (катушки, свечи системы зажигания, провода высокого напряжения и т.д.);

3) Поломка произошла под воздействием фактором извне (атмосферное воздействие, механическое повреждение).

Наиболее распространенный дефект электронной системы зажигания – это выход из строя свечей. К счастью, сегодня эти элементы могут приобрести все автомобилисты, посему устранение этой поломки не займет много времени.

Указать на неисправности системы электронного зажигания поможет даже внешняя диагностика. Легче всего заметить, как реагирует зажигание на неисправности, которые есть в топливной системе и системе впрыска горючего. Посему диагностировать систему зажигания нужно в комплексе с данными системами.

Внешние признаки поломки зажигания:

1) Увеличенный расход горючего;

2) Сниженная мощность движка;

3) На холостом ходу двигатель работает неустойчиво;

4) Запускать двигатель стало труднее.

В случае системы электронного зажигания плохая работа двигателя, его затрудненный запуск сигнал к тому, что произошел пробой или обрыв проводов высокого напряжения, вышли из строя свечи, сломан ЭБУ, датчик частоты вращения коленвала или датчика холла. Если же Ваш автомобиль стал «съедать» больше горючего, а двигатель стал выдавать меньшую мощность, то это может свидетельствовать о том, что вышки из строя свечи, входные датчики или ЭБУ.

Перед тем, как ехать к специалисту, постарайтесь самостоятельно произвести диагностику системы зажигания, так как велика вероятность самостоятельного обнаружения дефекта. В этом случае Вы просто замените свечи или катушку, и снова будете «на коне». Успехов.

Электроника за рулем

Как известно электронные системы зажигания на двигателе показали себя с очень хорошей стороны- это и снижение расхода топлива, более уверенный запуск двигателя (особенно в холодное время) и лучшая приемистость. Здесь мы рассмотрим разновидности электронных систем зажигания , их устройство , способы диагностики и ремонта.

Итак... Может быть кто-то еще и помнит те времена когда на автомобилях еще не было электронного зажигания. В то время все выглядело предельно просто- контактная пара на распределителе (трамблере) и катушка (бабина). при включении зажигания напряжение бортовой сети +12 Вольт проходит через катушку и попадает на контактную пару. При повороте ротора в трамблере кулачок размыкает контакты, в этот момент в катушке происходит перепад напряжения и за счет ЭДС самоиндукции на высоковольтной обмотке возникает напряжение.
Таким контактным зажиганием снабжались все отечественные авто (да многие из них и сейчас бороздят просторы нашей родины....) и при всей своей простоте у данной конструкции имеется один очень огромный недостаток- это постоянное подгорание контактов (иногда, правда значительно реже, износ кулачка).

В электронном зажигании работою высоковольтной катушки управляет электроника (ключ на мощном транзисторе), а вот сам датчик положения распределителя зажигания существует трех видов:

Рис 1. Разновидности электронного зажигания

1. Все та же контактная пара. По сути все осталось по старому- контакты размыкаются при помощи кулачка, с той лишь разницей что на самих контактах уменьшился ток и поэтому они стали более долговечными. На рисунке это вариант "А". Цифрами условно показаны: 1- контактная пара, 2- блок электронного зажигания, 3- распределитель зажигания.
2. Датчик в виде однофазного генератора переменного тока. Звучит мудрено, но на практике все выглядит очень даже просто- на статоре распределителя крепится постоянный магнит, корпусе распределителя- электромагнитный датчик (катушка), а на подвижном роторе- пластина из магнитомягкой стали с прорезями. При вращении ротора, начинает вращаться и пластина, открывая-закрывая магнитное поле между магнитом и датчиком.
На рисунке этот вариант обозначен буквой "Б".
3. Датчик Холла. В принципе здесь практически все так-же как и в предыдущем варианте: положение ротора распределителя определяется за счет изменения электромагнитного поля, только датчики сделаны немного по другому.

Как проверить исправность электронного коммутатора

Думается что вывод здесь напрашивается сам: чтобы проверить исправность блока электронного зажигания необходимо подать на его вход управляющие импульсы- просто заставить его подумать что он подключен к работающему распределителю. В качестве источника таких импульсов может послужить самый обыкновенный генератор прямоугольных импульсов с рабочей частотой 1- 200 Гц, правда к нему есть основное требование- он в обязательном порядке должен формировать импульсы не амплитудой не менее 8 Вольт.
Вот его примерная схема

Примечание : у нас на сайте есть еще один вариант Как проверить электронный коммутатор

Подключение устройства для проверки и диагностики следующее:

Обозначения на рисунке:
1. Генератор прямоугольных импульсов.
2. осциллограф для контроля выходящих импульсов
3. Стабилизатор сетевого напряжения (не обязателен)
4. Источник напряжения 12 Вольт мощностью не менее 20 Вт
5. Проверяемый блок
6. Катушка зажигания
7. Свеча зажигания.

Ну, вот, здесь примерно все ясно- давайте теперь рассмотрим все виды устройств в отдельности...

Электронное зажигание контактного типа

Данное устройство выпускалось под названием КТ-1 и было предназначено для установки в автомобили с механическими контактами в прерывателе (Москвич, Жигули, Волга).

Вот его полная схема, а рисунком ниже показаны осциллограммы в контрольных точках:

Система электронного зажигания КТ-1. схема электрическая

Начнем с того момента когда контакты в распределителе разомкнуты (рис а). В этот момент конденсатор С1 начинает заряжаться по цепи +12В,VD5, R4 , эмиттер-коллектор VT2, С2, база-эмиттер VT3, "масса".
Стабилизатор тока, собранный на транзисторах VT1, VT2 позволяет заряжаться конденсатору С2 стабилизированным током (рис б) и по этому при разной частоте размыкания контактов, на VT3 формируются импульсы одинаковой длительности.
Напряжение питания +12 Вольт через VD3, R8 попадает на базу транзистора VT4 и отпирает его. В результате VT5, VT6 запираются.

Как только контакты в прерывателе замкнутся, начинается процесс разряда конденсатора С2. Цепь VD3, C1, R8 закрывается и в этот момент VT3 запирается обратным потенциалом на С2. Высокий уровень с коллектора VT3 через диод VD4 подается на VT4 и держит его в открытом состоянии.
Когда напряжение на С2 достигнет уровня срабатывания, открывается транзистор VT3, а VD4 запирается, но так как контакты прерывателя разомкнуты через цепь VD3, R8, то транзистор VT4 будет продолжать удерживаться в открытом состоянии.
Положительный потенциал коллектора VT4 открывает транзисторы VT5, VT6 и через первичную обмотку катушки зажигания проходит ток.
В момент t3 транзистор VT4 переходит в открытое состояние, транзисторы VT5, VT6 запираются и резко убывающий ток в первичной обмотке вызовет возникновение искры на свече зажигания.
В период t3-t4 происходит до-зарядка конденсатора C2 до уровня напряжения источника питания, и как только контакты прерывателя разомкнуться, весь процесс повторится.

Эксплуатация данного блока зажигания выявила следующие недостатки:

1. При включенном долгое время зажигании при неработающем двигателе или при разомкнутых контактах, транзистор VT6 находится под постоянной нагрузкой что приводит к его перегревы и выходу из строя.
2. Работоспособность схемы очень зависит от правильности установки угла опережения зажигания.

коммутаторы 36.3734 и Б550

Эти коммутаторы предназначены для совместного использования с датчиком Холла и устанавливались на автомобили ВАз-2108, 09. Вместо них можно применить коммутатор 36.40.3734. Но и это еще не все- полная совместимость с импортными коммутаторами позволяет применять его и на зарубежных автомобилях марок FORD, OPEL, WOLKSWAGEN.

Схема коммутатора и осциллограммы

Осциллограммы в контрольных точках

Импульсы с датчика Холла поступают на вход 6 (рис А) и попадают на базу VT1. Транзистор VT1 инвертирует импульсы (рис в) и через R5 они проходят к базе VT2 (рис И).

Для избежания перегрева выходного ключа, в коммутаторе предусмотрена схема, закрывающая выходной каскад при отсутствии входного сигнала и при замкнутом состоянии датчика Холла:
На вход 6 микросхемы DA1.2 (рис Д) через VD4 поступает сигнал с выходного каскада, одновременно с этим на вывод 5 микросхемы DA1.2 поступает входной сигнал (рис Е). Каскад на DA1.2 собран по схеме интегратора, импульсы на его выходе имеют трапециедальную форму (рис Ж) и они поступают на компаратор DA1.3.
Если импульсы не проходят на входы DA1.2 то компаратор DA1.3 на выходе 8 выдаст высокий уровень и в результате VT2 откроется, а выходной каскад закроется.

В динамическом режиме микросхема DA1.3 формирует прямоугольные импульсы (рис З). Микросхема DA1.4 выполняет роль компаратора: как только напряжение на резисторах R35, R36 превысит допустимое, компаратор сработает и откроет транзистор VT2. При этом выходной каскад на транзисторах VT3, VT4 закроется.

Эксплуатация данного коммутатора показала его достаточную надежность. Если и происходили случаи выхода из строя выходного транзистора, то в основном по вине неисправного генератора или замкнутой катушки зажигания.
Единственный недостаток выявленный в процессе эксплуатации- перебои в работе на повышенных оборотах двигателя, поэтому автором было предложено ввести в схему дополнительную цепь- резистор R* (вывод 5 микросхемы DA1.2).

коммутатор 1302.3734

Коммутатор 13.3734-O1

Показанные выше два вида коммутаторов применяются в бесконтактных системах зажигания с применением генератора тока. (что это такое смотрим в начале статьи).
Такие системы зажигания применялись в автомобилях Волга, УАЗ, РАФ, Газель. В них чаще всего также выходит из строя ключевой выходной транзистор. Причем как выяснилось в большинстве коммутаторов под транзистором отсутствовала термо-отводящая паста, так что замене транзистора следует эту пасту нанести.

Транзисторы в коммутаторах можно менять на близкие по параметрам: КТ898А, КТ8109А, КТ8117А

При подготовки материала была использована информация из журналов

Многолетняя эксплуатация на отечественных и зарубежных автомобилях электронных блоков зажигания, собранных по статье Ю. Сверчкова усовершенствованиями, предложенными Г. Карасевым , показала, что эти усовершенствования вместе с положительными качествами (увеличение длительности искры, например) приводят к появлению сбоев в искрообразовании на частоте вращения коленчатого вала 3000 мин-1 и более. Более того, оказалось, что полностью устранить эти сбои исключительно трудно, даже если точно следовать рекомендациям, данным в .

На стадии налаживания блока было установлено, что появление на зажиме "К" катушки зажигания полуволны напряжения после закрывания диода VD5 (обозначения элементов здесь и далее соответствуют схеме на рис. 1 в ) крайне нестабильно. Характеристики этой полуволны сильно зависят не только от номиналов конденсатора С2 и резистора R4, но и от напряжения питания, и в еще большей степени от ширины искрового промежутка.

После установки на автомобиль блока, отрегулированного и работающего на стенде без сбоев в интервале частоты формирователя импульсов 10...200 Гц с двумя периодами разрядки конденсатора C3 при напряжении питания 14 В, искровом промежутке 7 мм, сбои в искрообразовании проявлялись на высоких оборотах коленчатого вала. Не помогало ни различное сочетание значений емкости конденсатора С2 (от 0,01 до 0,047 мкФ) и сопротивления резистора R4 (от 300 до 1500 Ом), ни даже подборка тринистора VS1 по току управления.

Сбои полностью исчезали при номинале резистора R4 свыше 1,5 кОм и конденсатора С2 0,01 мкФ, т. е. при однопериодном искрообразовании в соответствии со схемой блока Ю. Сверчкова. Несколько лет блок безотказно работал с удаленной цепью удлинения искры C2R3R4VD6.

Анализ осциллограмм напряжения на зажиме "К" катушки зажигания, полученных на установленном в автомобиль блоке зажигания с цепью удлинения искры, при различной частоте искрообразования, приводит к выводу, что причина появления сбоев в искрообразовании кроется в нестабильности скорости нарастания полуволны напряжения на конденсаторе C3, следующей за закрыванием диода VD5.

Поэтому приходится признать, что метод увеличения длительности искрового разряда тринисторно-конденсаторным блоком путем подачи на управляющий электрод тринистора повторного открывающего импульса, формируемого остаточным напряжением на накопительном конденсаторе, для практического использования в автомобиле непригоден.

Реализовать на практике идею увеличения длительности искрового разряда в конденсаторном блоке зажигания удалось благодаря использованию вместо тринистора мощного составного транзистора КТ898А, специально разработанного для автомобильных систем зажигания. Схема модернизированного блока показана здесь на рис.1 (далее обозначения элементов соответствуют этой схеме).

Цепь управления разрядкой накопительного конденсатора С2 существенно упрощена по сравнению с . Постоянную времени зарядки управляющего конденсатора C3 определяют номиналы элементов C3 и R3 и сопротивление диода VD7, а разрядки - C3 и R4, VD6 и сопротивление эмиттерного перехода транзистора VT2.

Ток базы транзистора VT2 зависит от напряжения на конденсаторе C3, сопротивления диода VD6, резистора R4 и напряжения питания, что позволяет наладить блок в стендовых условиях.

Для налаживания подключают блок к регулируемому источнику питания напряжением до 15 В и с током нагрузки 3...5 А и к катушке зажигания, устанавливают искровой промежуток 7 мм между ее центральным выводом и зажимом "Б". К контакту 6 разъема X1.1 подключают выход формирователя прямоугольных импульсов скважностью 3 и нагрузочной способностью не менее 0,5 А.

Очень удобно для налаживания воспользоваться октан-корректором со вспомогательными устройствами (надо только замкнуть переменный резистор R6 по рис. 1 в . В налаживаемом блоке вместо постоянного резистора R3 подключают переменный номиналом 2,2 кОм, установив его движок в положение максимального сопротивления. Включают источник питания на напряжение 14 В и подают на вход управляющие импульсы частотой от 10 до 200 Гц, контролируя осциллографом форму напряжения на зажиме "К" катушки зажигания - она должна соответствовать показанной на рис. 2.

Если на осциллограмме виден только один период колебания напряжения, вращением движка переменного резистора добиваются появления второго периода с обязательной видимой четкой границей окончания искрообразования. Затем уменьшают напряжение питания до 12 В и повторяют предыдущую операцию. После этого проводят контрольную проверку работы на частоте 10...200 Гц при напряжении питания 12...14 В. Измеряют сопротивление введенной части переменного резистора и впаивают постоянный резистор ближайшего номинала Обычно сопротивление R3 находится в пределах от 200 до 680 Ом. В отдельных случаях может потребоваться подобрать конденсатор C3 в пределах 1 ...3,3 мкФ.

Уменьшение постоянной времени зарядки конденсатора C3 из-за резистора R3 не ухудшает защищенности блока от импульсов "дребезга" контактов прерывателя, так как процесс "дребезга" короче времени, в течение которого ток базы транзистора VT2 достигнет значения, достаточного для его открывания. При использовании блока совместно с октан-корректором помехи, связанные с "дребезгом", подавляются еще более надежно.

Емкость накопительного конденсатора С2 блока зажигания увеличена до 2 мкФ с целью увеличения времени его разрядки. В этом случае длительность первого периода разрядки равна 0,4 мс. Для того чтобы конденсатор успевал заряжаться до возникновения очередного цикла искрообразования, преобразователь в блоке необходимо форсировать, увеличив толщину набора пластин трансформатора Т1 до 8 мм, а при налаживании блока по методике Ю. Сверчкова подборкой резистора R1 добиться напряжения 150... 160 В на конденсаторе С2 (конденсатор при этом необходимо зашунтировать резистором сопротивлением 1,5 кОм мощностью не менее 5 Вт). В таком варианте исполнения преобразователь в блоке продолжает надежно работать в течение уже более 6 лет.

Диод VD5 по схеме рис. 1 в из блока исключен; его функцию выполняет встроенный защитный диод транзистора VT2 блока. Конденсатор С2 - МБГО, C3 - К53-1 или К53-4, К53-14, К53-18; применять алюминиевые конденсаторы из-за большого тока утечки и невысокой надежности нельзя. Транзистор КТ898А можно заменять только на КТ897А, КТ898А1 или на зарубежные BU931Z, BU931ZR BU931ZPF1, BU941ZPF1. Разъем Х1 состоит из вставки ОНП-ЗГ-52-В-АЭ и розетки ОНП-ЗГ-52-Р-АЭ.

Описываемый блок можно применять в автомобилях семейств ВАЗ-2108 и ВАЗ-2109, для чего потребуется подключить к блоку левее разъема Х1.1 по схеме рис. 1 согласующий узел, собранный по схеме на рис. 3 (крестом отмечено место разрыва цепи). Если же предполагается совместно с блоком зажигания использовать октан-корректор , из согласующего узла следует исключить резисторы R1, R4 и конденсаторы С1, С2, замкнуть резистор R2 и диод VD1 и соединить выход октан-корректора (резистор R7) с базой транзистора VT1 узла. Стабилитрон Д816А надо заменить на Д815В, плюсовой провод питания корректора подключить к контакту 5 разъема Х1.1. Конденсаторы в узле С1 - КМ-5 (КМ-6, К10-7, К10-17), С2 - К73-9(К73-11).

При использовании блока на автомобилях других типов, имеющих контактный прерыватель, для питания октан-корректора следует установить параметрический стабилизатор напряжения, рис. 4.

Вывод конденсатора прерывателя Спр отключают и припаивают его к контакту 7 розетки Х1.2. Теперь для перехода на обычное зажигание достаточно вставить в розетку Х1.2 вилку-заглушку Х1.3, у которой соединены вместе контакты 1,6,7 (на схеме рис. 1 она не показана). Чтобы не выводить провод от конденсатора прерывателя Спр к розетке Х1.2 в вилке Х1.3, можно предусмотреть конденсатор С4 К73-11 емкостью 0,22 мкФ на напряжение 400 В, подключив его между контактами 1, 6, 7 и контактом 2. В этом случае конденсатор Спр просто демонтируют.

После проведения указанной модернизации блок обеспечивает бесперебойное искрообразование с двумя периодами общей длительностью искры не менее 0,8 мс при частоте вращения коленчатого вала двигателя от 30 до 6000 мин-1 и изменении напряжения бортовой сети автомобиля от 12 до 14 В. Двигатель стал работать "мягче", улучшилась динамика автомобиля.

При снижении напряжения питания до 6 В блок сохраняет бесперебойное искрообразование с одним периодом в указанных пределах частоты вращения коленчатого вала, причем двупериодное искрообразование сохраняется до частоты вращения 1500 мин-1 при уменьшении бортового напряжения до 8 В, что существенно облегчает запуск двигателя.

Применение в блоке коммутирующего транзистора вместо тринистора позволяет также повысить энергию искры за счет практически полной разрядки накопительного конденсатора через первичную обмотку катушки зажигания, как в конденсаторных блоках зажигания с импульсным накоплением энергии. Этот вариант работы стал возможным благодаря тому, что блок Ю. Сверчкова не боится замыкания накопительного конденсатора С2. Реализация указанного качества достигнута включением диода VD8 параллельно первичной обмотке катушки зажигания (на схеме блока он показан штриховыми линиями).

Процесс разрядки накопительного конденсатора для блока зажигания с непрерывным накоплением энергии в конденсаторе несколько необычен. При замыкании контактов прерывателя заряжается управляющий конденсатор C3, и в момент их размыкания он оказывается подключенным плюсовой обкладкой через диод VD6 к базе транзистора VT2, а минусом через резистор R4 - к эмиттеру. Транзистор VT2 открывается и остается открытым до тех пор, пока ток его базы - ток разрядки конденсатора C3 - остается для этого достаточным.

Накопительный конденсатор С2 подключен через транзистор VT2 к первичной обмотке катушки зажигания и разряжается в течение первой четверти периода так же, как в блоке . Когда напряжение на зажиме "К" катушки перейдет через нулевое значение, диод VD8 открывается. Ток в цепи в этот момент достигает максимума. Открытый диод VD8 шунтирует конденсатор С2, соединенный через открытый транзистор VT2 с обмоткой I катушки, и, следовательно, перезарядки конденсатора не происходит, он разряжается полностью на обмотку I катушки зажигания и вся его энергия переходит в ее магнитное поле.

Открытый диод VD8 поддерживает ток в контуре, образованном им и обмоткой I, и возникший в течение первой четверти периода искровой разряд. После того как вся запасенная энергия катушки будет израсходована, искровой разряд прекращается. Следует отметить, что в этом случае, в отличие от случая колебательного процесса разрядки конденсатора С2, длительность разрядки не зависит от состояния транзистора VT2 и определяется только емкостью конденсатора С2 и характеристиками катушки зажигания.

Таким образом, транзистор VT2 может закрыться до или после окончания искрового разряда, что снижает требования к точности регулировки блока. Достаточно наладить его на стенде для случая колебательного процесса, а затем просто припаять диод VD8. Это свойство блока делает его универсальным. Например, если требуется повышенный ресурс свечей зажигания, блок используют в колебательном режиме, длительность искрового разряда 0,8 мс, уверенный запуск двигателя в любых условиях. А когда требуется высокая энергия искры (повышенные требования к уровню токсичности выхлопных газов), блок используют с токовым процессом разрядки, установив диод VD8. Искровой разряд во время испытаний блока с диодом имеет вид шнура сине-малинового цвета, как у транзисторных систем.

Для модернизации уже изготовленных блоков никаких существенных переделок не требуется. Транзистор КТ898А и диод КД226В свободно размещаются на существующей плате вместо тринистора VS1 и цепи удлинения искры C2R3R4VD6. Теплоотвод транзистору совершенно не нужен, поскольку длительность протекающего через него импульса тока несоизмеримо меньше, чем в транзисторных системах.

После модернизации значительно увеличивается импульсный ток, потребляемый блоком зажигания при работе двигателя (при остановленном двигателе ток остался прежним - 0,3...0,4 А). Поэтому целесообразно между контактом 4 разъема Х1 и общим проводом подключить оксидный блокирующий конденсатор емкостью 22 000 мкФ на напряжение не менее 25 В.

Разумеется, описанной модернизацией блока не исчерпываются возможности дальнейшего наращивания длительности и энергии искрового разряда. Так, например, был опробован способ подключения первичной обмотки катушки зажигания к источнику питания в момент окончания цикла искрообразования. И хотя такой блок получается более сложным и, соответственно, менее надежным, в целом по этим показателям он превосходит многие другие, описанные в журнале.

Фрагмент схемы усовершенствованного варианта изображен на схеме рис. 5 (преобразователь по-прежнему остается неизменным).

После размыкания контактов прерывателя процессы, протекающие в блоке в первую четверть периода разрядки накопительного конденсатора С2, аналогичны описанным выше (фаза 1 на рис. 6), однако, кроме этого, происходит зарядка конденсатора С4 через резисторы R4, R5, эмиттерный переход транзистора VT3. Зарядный ток этого конденсатора открывает транзистор VT3 и удерживает его в этом состоянии в течение времени, определяемом параметрами элементов зарядной цепи.

После того как напряжение на зажиме "К" катушки зажигания перейдет через нулевое значение в конце первой четверти периода и превысит прямое напряжение диода VD9, он откроется и зажим "К" через диод VD9 и транзистор VT3 будет подключен к общему проводу. Через первичную обмотку катушки зажигания потечет ток от источника питания, суммируясь с током разрядки конденсатора С2 и поддерживая возникший искровой разряд (фаза 2).

Далее ток базы транзистора VT3 становится столь малым, что транзистор закрывается, отключая первичную обмотку катушки зажигания. Возникающий при этом всплеск напряжения на зажиме "К" - около 200 В (фаза 3 на рис.) - оказывается достаточным для повторного пробоя искрового промежутка, так как к этому моменту искровой разряд фактически еще не был закончен и повторный пробой происходит в подготовленной среде. Далее разряд протекает, как в транзисторной системе (фаза 4 на рис. 6).

После замыкания контактов прерывателя конденсатор С4 быстро разряжается через резистор R5 и диод VD10, подготавливаясь к очередному циклу искрообразования.

Суммарная длительность искрового разряда в усовершенствованном блоке равна 2 мс и остается практически постоянной в интервале частоты формирователя импульсов от 10 до 200 Гц при напряжении питания 14 В.

Налаживание этого блока сложности не представляет. Сначала налаживают его с отключенным транзистором VT3 так же, как описано выше. Затем подключают транзистор VT3, вместо постоянного резистора R5 подключают переменный сопротивлением 2,2 кОм и устанавливают его движок в положение наибольшего сопротивления.

Включают источник питания и устанавливают напряжение 14 В. Вращением движка переменного резистора добиваются, чтобы форма напряжения на зажиме "К" катушки зажигания соответствовала показанной на рис. 6 в интервале частоты формирователя импульсов от 10 до 200 Гц, после чего вместо переменного резистора впаивают постоянный соответствующего сопротивления (обычно - от 430 до 1000 Ом).

Испытания были проведены с катушкой зажигания Б115 для контактной системы автомобиля ГАЗ-24 при замкнутом добавочном резисторе. Замыкания этого резистора можно не опасаться - катушка не перегреется, так как время искрового разряда, формируемого блоком в каждом цикле, меньше времени нахождения катушки подтоком при замкнутых контактах прерывателя в обычной системе зажигания. В случае применения других катушек зажигания оптимальную емкость конденсаторов C3 и С4 может потребоваться уточнить экспериментально.

Эффективность работы узла на транзисторе VT3 оценивают, отключив после налаживания конденсатор С4. Устанавливают частоту искрообразования 200 Гц и касаются выводом конденсатора С4 в месте его отключения - звук искрового разряда должен изменяться, а шнур искры - становиться немного толще, с образованием вокруг него светлого облачка ионизированного газа, как у искрового разряда, формируемого транзисторными системами. Опасности повреждения транзистора VT3 при этом нет.

Транзистор VT3 необходимо установить на корпус блока, смазав прилегающую к нему поверхность пастой КПТ-8 или смазкой Литол-24. Если вместо КТ898А1 (или BU931ZPF1) использован другой транзистор, под него придется подложить изолирующую слюдяную прокладку.

Чертеж печатной платы блока по схеме рис. 1 представлен на рис. 7.

Плата разработана таким образом, чтобы максимально облегчить сборку любого описанного в статье варианта блока зажигания. Резистор R1 для удобства налаживания составлен из двух - R1.1 и R1.2. Вместо диодов Д220 можно использовать КД521А, КД521В, КД522Б; вместо Д237В подойдут КД209А-КД209В, КД221В, КД221Г, КД226В-КД226Д, КД275Г, а вместо КД226В (VD8) - КД226Г, КД226Д, КД275Г. Для октан-корректора надо предусмотреть отдельную плату.

Трансформатор Т1 собран на магнитопроводе Ш16х8. Пластины собраны встык, в зазор вложена полоска стеклотекстолита толщиной 0,2 мм. Обмотка I содержит 50 витков провода ПЭВ-2 0,55 (можно толще - до 0,8), обмотка II - 70 витков провода ПЭВ-2 диаметром от 0,25 до 0,35 мм, обмотка III - 420-450 витков провода ПЭВ-2 диаметром от 0,14 до 0,25 мм.

Фото одного из вариантов блока зажигания (без кожуха) показано на рис. 8.

Литература

  1. Сверчков Ю. Стабилизированный многоискровой блок зажигания. - Радио, 1982, № 5, с. 27-30.
  2. Карасев Г. Стабилизированный блок электронного зажигания. - Радио, 1988, № 9, с. 17, 18.
  3. На вопросы читателей отвечают авторы статей и консультанты. - Радио, 1993, № 6, с. 44,45 (Г.Карасев. Стабилизированный блок электронного зажигания. - Радио, 1988, № 9, с. 17,18; 1989, № 5, с. 91; 1990, № 1.С.77).
  4. Сидорчук В. Электронный октан-корректор. - Радио, 1991, № 11, с. 25. 26.
  5. Адигамов Э Доработанный электронный октан-корректор. - Радио, 1994, № 10, с. 30,31.

Читайте и пишите полезные


Работа любого бензинового двигателя внутреннего сгорания была бы невозможна без специальной системы зажигания. Именно она отвечает за воспламенение смеси в цилиндрах в строго определенный момент. Различают несколько возможных вариантов:

  • контактная;
  • бесконтактная;
  • электронная.
Каждая из этих систем зажигания авто имеет свои особенности и конструкцию. Однако вместе с этим, большинство элементов разных вариантов одинаковы.

Одинаковы элементы разных систем зажигания автомобиля

Незаменимым и наиболее востребованным является наличие аккумуляторной батареи. Даже в отсутствие или при поломке генератора при помощи неё можно ещё некоторое время продолжать движение. Генератор также есть неотъемлемой частью, без которой нормальное функционирование любой из систем невозможно. Свечи зажигания, бронепровода, высоковольтная и управляющие элементы дополняют любую из упомянутых систем. Основное различие меду ними заключается в типе, управляющего моментом зажигания и отвечающего за искрообразование устройства.

Контактный прерыватель-распределитель зажигания

Это устройство инициирует возникновение искры высокого, до 30000 В, вольтажа на контактах свечей зажигания. Для этого он соединяется с высоковольтной катушкой, благодаря которой происходит образование высокого напряжения. Сигнал на катушку передается при помощи проводов от специальной контактной группы. При её размыкании кулачковым механизмом происходит образование искры. Момент её возникновения должен строго соответствовать требуемому положению поршней в цилиндрах. Это достигается благодаря четко рассчитанному механизму, передающему вращательное движение на прерыватель-распределитель. Одним из недостатков устройства является влияние механического износа на время возникновения искры и на её качество. Это влияет на качество работы двигателя, а значит может требовать частых вмешательств в регулировку его работы.


Бесконтактное зажигание

Этот тип устройств не зависит на прямую от размыкания контактов. Основную роль в моменте искрообразования здесь играет транзисторный коммутатор и особый датчик. Отсутствие зависимости от чистоты и качества поверхности контактной группы может гарантировать более качественное искрообразование. Однако этот тип зажигания тоже использует прерыватель-распределитель, который отвечает за передачу тока на нужную свечу в нужный момент.


Электронное зажигание

В этой системе воспламенения смеси полностью отсутствуют механические движущиеся части. Благодаря наличию специальных датчиков и особого блока управления, образование искры и момент её раздачи на цилиндры выполняются гораздо более точно и надежно, чем у вышеупомянутых систем. Это дает возможность улучшить работу двигателя, увеличить его мощность и снизить расход топлива. Кроме того, радует и высокая надежность устройств такого типа.


Основные этапы работы системы зажигания

Различают несколько основных этапов работы любых систем зажигания:

  1. накопление необходимого заряда;
  2. высоковольтное преобразование;
  3. распределение;
  4. искрообразование на свечах зажигания;
  5. возгорание смеси.
На любом из этих этапов слаженная и точная работа системы чрезвычайно важна, а значит свой выбор необходимо останавливать на надежных и проверенных устройствах. Лучшей по праву считается электронная система зажигания.

Видео про принцип работы системы зажигания:

Загрузка...